Revêtements UV-aqueux pour le bois renforcés par la Cellulose Nano-Cristalline

Authors: Vardanyan, Vahe
Advisor: Riedl, BernardGalstian, Tigran
Abstract: This thesis is aimed to increase the performance of UV - waterborne coatings for wood, using the forest resources. For this purpose, we believe replacing nanoparticles studied previously by the cellulose nanocrystals (CNC), a Canadian and Quebec product from the forest. There are several instances in the literature of nanocellulose-thermoplastic composites, but there are few studies on coatings reinforced by CNC. One of the key aspects in the technology of nanocomposites remains the dispersion of the nanoparticles within the matrix. To quantify the dispersion, efficient methods of characterization are needed. In this thesis two new characterization methods based on atomic force microscopy and back scattering of laser light (He-Ne 632.8 nm) are applied to characterize such nanocomposite coatings. A strong correlation between surface nano-roughness of coatings and angular distribution of backscattered laser light was found. The overall objective of the research is to develop nanoparticles reinforced UV-water-based coatings for wood applications, and to study the effect mainly on wear properties of the final composite coatings. CNC were mixed to the coating formulation in order to improve the mechanical properties of the coatings. The coating formulations were sprayed on sugar maple boards, which were then placed in an oven to evaporate the water to finally be UV-cured. CNC was modified by either alkyl quaternary ammonium bromides or acryloyl chloride. The mechanical properties (abrasion and scratch resistances, hardness and adhesion) were analyzed and compared to the reference varnish without nanoparticles. The modified CNC addition in UV-water-based coatings results in a ca 30 - 40% increase in wear resistance (abrasion and scratch), without any loss of appearance. These coatings on wood substrate, with and without added CNC, were submitted to accelerated weathering during 1200 h. The results show that the addition of CNC to coatings not only increases mechanical properties but also increases color stability of coated wood.
Document Type: Thèse de doctorat
Issue Date: 2015
Open Access Date: 23 April 2018
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
31558.pdf12.02 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.