Analysis, simulation and optimization of ventilation of aluminum smelting cells and potrooms for waste heat recovery

Authors: Zhao, Ruijie
Advisor: Gosselin, LouisFafard, Mario
Abstract: Due to the high energy requirement and ~50% efficiency of energy conversion in aluminum reduction technology, the waste heat is enormous but hard to be recovered. The main reason lay in its relatively low temperature. Moreover, any changes may affect other aspects of the production process, positively or negatively. A complete understanding of the heat transfer and fluid flow in aluminum smelting cells can help to achieve a good trade-off between modifications and maintenance of cell conditions. The present work aims at a systematic understanding of the heat transfer in aluminum smelting cell and to propose the most feasible way to collect the waste heat in the cell. First, a thermal circuit network is developed to study the heat loss from the top of a smelting cell. By associating the main thermal resistances with material or operating parameters, a sensitivity analysis with respect to the parameters of interest is performed to determine the variables that have the most potential to maximize the thermal quality of the waste heat in the pot exhaust gas. It is found that the reduction of pot draft condition is the most efficient solution. Then, a more detailed Computational Fluid Dynamics (CFD) model is developed. A good agreement between the two models is achieved. Second, a systematic analysis of the reduction of draft condition is performed based on CFD simulations. Three issues that may be adversely affected by the draft reduction are studied and corresponding modifications are proposed and verified in CFD simulations. The first issue, maintaining total top heat loss, is achieved by exposing more anode stubs to the air and enhancing the radiative heat transfer. The second one is to verify the influence of the draft reduction on the heat stress in potroom and limited influence is observed in the simulations. Finally, the pot tightness is enhanced by reducing pot openings in order to constrain the level of fugitive emissions under reduced pot draft condition. The results have revealed that 50% reduction in the normal draft level is technically realisable and that the temperature of pot exhaust gas can be increased by 50-60 ˚C.
Document Type: Thèse de doctorat
Issue Date: 2015
Open Access Date: 23 April 2018
Permalink: http://hdl.handle.net/20.500.11794/25771
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
31488.pdf6.09 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.