TiO₂ and its derivatives : synthesis, characterization and application in H₂ production via water splitting and in bulk heterojunction solar cells

Authors: Vu, Thi Thuy Duong
Advisor: Mighri, Frej; Trong-on, Do
Abstract: In a context of environmental crisis and depletion of conventional energy resources, the current energy model based on fossil fuels is obsolete and needs to be redefined and redesigned. Even though, there are many different renewable alternatives developed or under developing, which are expected to take a main role in the middle and long term. The use of energy from the sun is currently attracting much attention from the scientists. For example, hydrogen generation via water splitting and photovoltaic devices that convert directly sunlight into electricity become more competitive as the cost continues to decrease with the technology advancement. Taking this into account, this thesis is focused on the synthesis and modification of titanium dioxide nanoparticles (TiO2 NPs) and the development and optimization of devices based on these nanoparticles for photovoltaic applications and photocatalyst water splitting. The synthesis of TiO2 NPs was mainly emphasized on controlling the morphologies, especially their shape and size, by using different types of capping agents. TiO2 NPs with various shapes, such as nanosphere, nanorod, nanorhombic, and various sizes from 3 x 40 nm to 3 x 20 nm were achieved. The effects of capping agent on TiO2 NPs morphologies were characterized and analyzed carefully. Based on the developed TiO2 NPs, cadmium sulfide (CdS) was deposited on the surface of TiO2 NPs, and then was optimized for the hybrid bulk heterojunction solar cells (BHJs) and photocatalytic hydrogen production via water splitting. Especially, with the use of TiO2-based nanocomposites in BHJs systems, it showed improvement of around 17 times in power efficiency conversion compared to the system used unmodified TiO2 NPs. On the other hands, with the use of a new non-noble metal-nanocomposites composed of CdS/TiO2, and Nikel clusters, the performance of the photocatalytic hydrogen production via water splitting system was enhanced and it showed that the reaction is stable up to 15h.
Document Type: Thèse de doctorat
Issue Date: 2015
Open Access Date: 20 April 2018
Permalink: http://hdl.handle.net/20.500.11794/25661
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
31171.pdfTexte8.02 MBAdobe PDFThumbnail
View/Open
All documents in CorpusUL are protected by Copyright Act of Canada.