Étude de la régulation transcriptionnelle du gène hoxa5 chez la souris

Authors: Bérubé-Simard, Félix-Antoine
Advisor: Jeannotte, Lucie
Abstract: Hox genes encode transcription factors, which orchestrate bilaterian anteroposterior patterning. Using Hoxa5-/- mice as model, we have demonstrated that this gene plays a key role in axial and appendicular skeletal patterning as well as in the formation of several organs such as the respiratory and digestive tracts. Using a transgenesis approach and successive deletions in the Hoxa4-Hoxa5 intergenic region, I have identified two distinct regulatory elements responsible for Hoxa5 expression in respiratory and digestive tracts: a 163-bp NcoI-SacI DNA fragment having enhancer activity that drives expression in lung, stomach and intestine, and a 259-bp XbaI-BssHII fragment necessary for a complete Hoxa5 digestive tract expression. Electrophoretic mobility shift (EMSA) and chromatin immunoprecipitation (ChIP) assays have demonstrated the capacity of the YY1 transcription factor to bind these two DNA sequences. By mutating its binding sites in a transgenesis context, I have highlighted the transcriptional activator role of the YY1 protein in Hoxa5 organ expression, which is very interesting since few examples of Hox gene activation by YY1 are reported in the literature. I have also generated two transgenic mice lines expressing the Cre recombinase under the control of two combinations of identified regulatory sequences. These lines have been charaterized and provide useful genetic tools to study gene function in specific tissues along the anteroposterior axis. I have also applicate ChIP technology to demonstrate the in vivo binding of CDX4 and HOXB9 homeobox transcription factors to the 164-bp AvrII-Eco47III DNA fragment included in the MES regulatory element. Consequently, I have shown that the HOXB9 protein caudally participates to restrict the Hoxa5 gene expression at the level of prevertebra 10, which supports the posterior prevalence concept. Finaly, the Hoxa5 locus encompasses 4 overlapping transcripts of 1.8, 5.0, 9.5 and 11.0-kb that can produce a HOXA5 protein in an in vitro context. However, I have demonstrated that only the short transcript of 1.8-kb corresponding to the two known Hoxa5 gene exons is transcribed into an in vivo HOXA5 protein associated to the gene function. Data will be presented and discussed.
Document Type: Thèse de doctorat
Issue Date: 2014
Open Access Date: 20 April 2018
Permalink: http://hdl.handle.net/20.500.11794/25601
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
30846.pdf81.55 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.