Développement de nanosondes plasmoniques d'indium pour l'exaltation de la fluorescence dans l'UV

Authors: Gagnon, Joanie
Advisor: Boudreau, Denis
Abstract: Until recently, most of the work done on metal-enhanced fluorescence of molecular fluorophores employed silver and gold nanoparticles as the substrate. However, these metals are not perfectly suit for fluorescence enhancement in the UV region of the spectrum as their maximum plasmonic bands are centered at approximately 400 nm and 530 nm for silver and gold, respectively. The interest in the UV region is mostly due to biomedical studies as most of the biomolecules absorb and emit in this region. In this project, the focus is on DNA, which is fluorescent via the nucleobases, en even more so on proteins which owe their intrinsic fluorescence to the three aromatic amino acids, tryptophan, tyrosine and phenylalanine. The main goal of this project is to develop a nanostructure able to support metal-enhanced fluorescence in the UV. Indium seems to be the perfect metal to work with as it is part of the boron group (Al, Ga, In, Tl) which is characterized by low absorption losses, but also by its strong plasmonic band centered at approximately 300 nm making it suitable for metal-enhanced fluorescence studies in the UV. In this project, indium nanoparticles with a size ranging from 60 to 80 nm were developed with a plasmon approximately centered at 310 nm. Then, a protective dielectric layer of silica was synthesized on the indium core. The thickness of the silica layer is easily tunable; it is used to find the optimal distance to observe a maximal fluorescence enhancement. Silica shells between 5 and 50 nm were used. Different strategies were considered for the grafting of the fluorophores on the surface of indium-silica nanoparticles. Incorporation of the fluorophore into a silica layer was chosen as it allows for covalent bonding between the fluorophore and the silica layer. Two different fluorophores were used. The first one is Carbostyril 124, acting as a model fluorophore, and the second one is tryptophan as it is the most fluorescent amino acid. Enhancement factors of up to 3 and 7 were obtained for Carbostyril 124 and tryptophan, respectively. Others preliminary tests have been made on tyrosine and phenylalanine, the two other fluorescent amino acids, and on DNA.
Document Type: Mémoire de maîtrise
Issue Date: 2014
Open Access Date: 20 April 2018
Permalink: http://hdl.handle.net/20.500.11794/25194
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
30988.pdfTexte5.46 MBAdobe PDFThumbnail
All documents in CorpusUL are protected by Copyright Act of Canada.