Activité biologique et impact sur le microbiote intestinal des bactéries lactiques bactériocinogènes

Authors: Fernandez, Benoit
Advisor: Fliss, IsmaïlJean, Julie
Abstract: Bacteriocins are proteinaceous compound naturally produced by several bacterial strains with an inhibition activity directed against closely related bacteria. Recently, the production of bacteriocins was proposed as an important mechanism of action involved in the antimicrobial activity of probiotics in the gastrointestinal tract. This research aimed to evaluate the ability of some bacteriocin-producing lactic acid bacteria to produce their bacteriocins in the physiological and microbiological conditions of the digestive tract. Three strains, namely L. lactis biovar diacetylactis UL719 (producing nisin Z), P. acidilactici UL5 (producing pediocin PA- 1) and L. lactis ATCC 11454 (producing nisin A) were used as models throughout this thesis. Experiments performed with the TIM-1 digestive tract simulator have shown that P. acidilactici had a survival rate of 17 % in the stomach and small intestine. Passage in the proximal part of the digestive tract had little effect on the inhibitory activity of this strain. A slight over-expression of the genes encoding production of bacteriocin has been observed even at the end of the ileum. Unlike P. acidilactici UL5, L. lactis ATCC 11454 was less resistant to gastrointestinal stress, with a survival rate of less than 1 %. In addition, the three bacteriocin-producing strains considered in this study were proved able to grow and produce their bacteriocins in a culture medium simulating the colonic environment. In the case of P. acidilactici, we demonstrated significant inhibition of Listeria in the colonic medium and that this inhibition was directly correlated with the production of pediocin since no inhibition was observed with a non-producing mutant. Finally, we studied the ability of P. acidilactici to survive and produce its bacteriocin in the ileac conditions and the impact of this inhibitory activity on the balance of ileac microbiota of healthy humans. Microbiological analyzes revealed that P. acidilactici survived throughout the transit although it was not able to grow, probably due to a weak competitivity compared to the ileac microbiota. These observations may explain the low inhibitory activity of P. acidilactici against L. monocytogenes that we measured.
Document Type: Thèse de doctorat
Issue Date: 2014
Open Access Date: 20 April 2018
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
30845.pdfTexte4.41 MBAdobe PDFThumbnail
All documents in CorpusUL are protected by Copyright Act of Canada.