Atrophie, croissance et fonction musculaire : l'impact des leucocytes et de la triade RANK/RANKL/OPG

Authors: Dumont, Nicolas
Advisor: Frenette, JérômeCôté, Claude H.
Abstract: Muscle atrophy and dysfunction are characterized by a loss of muscle mass and force, which are commonly found in many pathologies or conditions such as AIDS, cancers, chronic obstructive pulmonary diseases, cast immobilization, hypogravity, bed rest or aging, to name a few. Muscle atrophy/dysfunction have also very high social and economic costs, but very few laboratories have investigated the cellular and molecular mechanisms behind these muscular problems. The aim of this thesis is therefore to enhance our understanding of different mechanisms governing muscle atrophy/dysfunction and regrowth by using different models of disuse and dystrophy. Thus, we have initially explored the roles of different leucocytes in atrophied and reloaded soleus muscle. Firstly, we looked at the role of mast cells and showed that the mechanical stress associated with muscle reloading is able to stimulate mast cell degranulation, which orchestrates the recruitment of neutrophils and monocytes/macrophages. Secondly, our experiments revealed that neutrophil activity is adaptable and that neutrophil-induced tissue damage is dependent on the microenvironment. In atrophied and reloaded muscles, the presence of neutrophils is not associated with secondary damage or promotion of muscle recovery. Thirdly, we demonstrated that the presence of macrophages is essential for optimal muscle force recovery from atrophy. Fourthly, we showed that the macrophage-colony stimulating factor (M-CSF) promote the myogenic activity of macrophages by stimulating their anti-inflammatory phenotype. Finally, we investigated the impact of the receptor activator of NF-kB (RANK) and its ligand RANKL, a signalling pathway involved in bone remodelling and osteoporosis, on muscle atrophy and dysfunction. Our results showed that the specific deletion of RANK in the muscle or the blockage of RANKL with osteoprotegerin increased significantly force production in denervated and dystrophic muscles. These results were associated with various modifications in calcium handling protein expression favouring efficient calcium uptake. Moreover, we also demonstrated that RANK activation gives preference to the reconversion from fast-to-slow muscle fibers following hindlimb unloading/reloading. Overall, our results bring a better understanding of different mechanisms related to muscle atrophy, dysfunction and regrowth and potentially open new avenues for the treatment of several debilitating skeletal muscle conditions.
Document Type: Thèse de doctorat
Issue Date: 2013
Open Access Date: 20 April 2018
Permalink: http://hdl.handle.net/20.500.11794/24845
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
29749.pdfTexte8.43 MBAdobe PDFThumbnail
View/Open
All documents in CorpusUL are protected by Copyright Act of Canada.