Un microarn au coeur de l'hypertension artérielle pulmonaire

Authors: Courboulin, Audrey
Advisor: Bonnet, Sébastien
Abstract: Pulmonary arterial hypertension (PAH) is characterized by the obstruction of the pulmonary arteries, mainly due to the pro-proliferative and anti-apoptotic phenotype of the pulmonary artery smooth muscle cells (PASMC). The progressive increase of pulmonary vascular resistance first leads to an increase of pulmonary pressure and then leads to a right heart failure, which generates patient’s death within few years. Many studies demonstrated the implication of the transcription factor NFAT (nuclear factor of activated T cell), which maintains the pro-proliferative and anti-apoptotic phenotype in PAH-PASMC. However, pathways that lead to the constitutive NFAT activation remain unclear. During my doctorate, I studied mechanisms responsible for the activiation of NFAT in HTAP. We study the role of the microRNA and more exactly to miR-204. Thus, the circulating factors, which are increased in PAH and which decreased miR-204 expression in PAH, via the transcription factor STAT3 activation. Through a positive regulation loop mechanism, the decrease of miR-204 induces an overactivation sustain of STAT3 leading to the pathologique phenotype. Thus, the exogenous increase of miR-204 could treat PAH in vitro as well as in vivo. We demonstrated that miR-204 is able to modulate the expression of the transcription factor Runx2 known to be implicated in calcification. In PAH-PASMC, the decrease of miR-204 is associated to an increase of Runx2 expression, known as positive regulator of the HIF-1 activation implicated in PAH. Thus miR-204 modulations affected the proliferation and apoptosis of PAH-PASMC through many molecular axes. Finaly we reveal the implication of the transcription factor Kruppel Like Factor 5 (KLF5) in PAH. The KLF5 overexpressed in PAH is associated to the STAT3 activation, wherease its inhibition decreased the proliferation and promoted apoptosis in PAH-PASMC. In vivo, si KLF5 reversed PAH by decreasing pulmonary pressures, right ventricular hypertrophy, proliferation and increasing apoptosis in PASMC from distal PA. Finally, I studied many aspects implicated in PAH development and especially the STAT3/NFAT axis activation. We showed that targeting this pathway using many technics (mimic miR-204, siRunx2, siSTAT3, siKLF5) seem to be an interesting strategy to treat PAH. Key words: Pulmonary arterial hypertension, therapeutic, proliferation, apoptosis, microRNA, and transcription factor.
Document Type: Thèse de doctorat
Issue Date: 2014
Open Access Date: 20 April 2018
Permalink: http://hdl.handle.net/20.500.11794/24804
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
30417.pdf10.28 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.