Encodage de l'information sensorielle nociceptive par la moelle épinière et son implication dans les douleurs neuropathiques et leur traitement

Authors: Lavertu, Guillaume
Advisor: De Koninck, Yves
Abstract: Neuropathic pain is a disease with a high prevalence in our society and despite this our treatments are generally disappointing at best. One of the main causes of the failure of our modern pharmacology for this treatment is our lack of understanding of how the pain system works. In this thesis I focused on one of these gaps: how nociceptive information is encoded by the spinal cord before being relayed to the brain and how this encoding is altered in neuropathic pain? Our results show that there are two types of projection neurons spinothalamic (STT) that encode nociceptive information: the wide dynamic range (WDR) and nociceptive specific (NS). Following the development of neuropathic pain only the activation threshold of the NS is altered. With this characterization, it is possible to test several drugs to target potential mechanisms involved in the development of neuropathic pain. We have demonstrated that the block of GABAA and/or glycine inhibitory channels decrease the activation threshold of NS-STT. These results confirm the involvement of these two inhibitory mechanisms in the development of this disease. On the other hand we have also demonstrated that the use of a new compound named CLP 257, an activator of KCC2, could reverse the hypersensitivity in our model of neuropathic pain by reducing the activation threshold of the NS-STT to physiological values. Another potential avenue of treatment, rather than trying to dissect each change in the spinal cord, would be to directly target NS-STT and normalize their response. To do so, we must first identify them and determine if they have specific pharmacological targets and to do this some tools had to be developed. For this reason among others, we have created a microprobe which allows us to photoswitch fluorescently labeled cells after their electrophysiological recording to recover them afterwards. The overall results of this thesis improve our understanding of the pain system, direct future research on the treatment of chronic pain and bring new research technologies.
Document Type: Thèse de doctorat
Issue Date: 2013
Open Access Date: 19 April 2018
Permalink: http://hdl.handle.net/20.500.11794/24251
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
30209.pdfTexte8.19 MBAdobe PDFThumbnail
All documents in CorpusUL are protected by Copyright Act of Canada.