Conception et validation d'une matrice 2D de détecteurs à fibres scintillantes plastiques pour la dosimétrie en radiothérapie externe

Authors: Guillot, Mathieu
Advisor: Beaulieu, LucGingras, Luc
Abstract: This thesis deals with the development and characterization of a 2D array of plastic scintillation detectors for the dosimetry of megavoltage energy photon beams used in radiation therapy. The characteristics sought with the detector array are accuracy, water-equivalence, a good spatial resolution, a large number of detectors and a high frequency readout of the doses deposited. The first part of this thesis is devoted to the improvement of the accuracy of the spectral method used to correct the Cerenkov effect. A study has determined the optimal attenuation characteristics for the optical fibers and two procedures able to accurately extract the calibration coefficients were developed. Measurements performed in various situations showed that this method can correct the Cerenkov effect with an accuracy of 1 %. The second part of this thesis relates to the design, realization and validation of a detector array consisting of 781 plastic scintillation detectors inserted vertically into a plane of a water-equivalent phantom. An novel optical system was also designed. It was determined that, on average, the standard deviation of measurements is smaller than 1 % for doses deposited greater than 6.3 cGy. It was also demonstrated that the dose distributions are not perturbed (within +/- 1.1 %) by the presence of the detectors inside the phantom. The characterization of the angular dependence showed that the incidences of radiation beams have very little effect on the accuracy of measurements. The detector array was also validated in the context of intensity-modulated radiation therapy (IMRT). Eleven treatment plans were measured and the results showed excellent agreements with dose distributions calculated with convolution-superposition algorithms or measured with radiochromic films. The sensitivity and specificity of the detector array to position errors of one leaf and one leaf bank of a multileaf collimator (MLC) were also determined by applying the principles of signal detection theory. The study concluded that plastic scintillation detectors could allow improving the quality of dosimetry in IMRT, due to their advantages compared to other dosimeters, such as water-equivalence, high frequency readout, high spatial resolution and a very low angular dependence.
Document Type: Thèse de doctorat
Issue Date: 2013
Open Access Date: 19 April 2018
Permalink: http://hdl.handle.net/20.500.11794/24202
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
29962.pdfTexte14.48 MBAdobe PDFThumbnail
View/Open
All documents in CorpusUL are protected by Copyright Act of Canada.