Étude du rôle de la protéine U94 de l'herpèsvirus humain de type 6 dans le processus de l'intégration chromosomique

Authors: Trempe, Frédéric
Advisor: Flamand, LouisMorissette, Guillaume
Abstract: Human herpesvirus 6 infects young children with an estimated prevalence of 95% in the world population. It differs from the other members of the herperviridae family by its capacity to integrate cell's chromosomes. It is estimated that approximately 1% of the world population carries a copy of the HHV-6 genome per cell (52, 73, 100, 119, 131). The chromosomal integration mechanisms used by HHV-6 are currently unknown. Our hypothesis is that the HHV-6 U94 protein plays an important role in chromosomal integration that we suspect occur through homologous recombination between cellular and viral telomeric sequences (TTAGGG). The U94 gene product shares 24% sequence homology with Rep68, a responsible for the genomic integration of adeno-associated virus 2 (AAV-2) (123). To promote integration, Rep68 relies on four intrinsic activities: binding to single and double stranded DNA, ATPase activity, helicase and endonuclease (54, 97). The goal of this research project is to characterize the biochemical properties of U94 and determine whether it posseses activities similar to Rep68. First, we confirmed the results of Dr. Mori's laboratory by showing that U94 is localized in the nucleus (87). Next, to conduct our studies, we’ve expressed and purified maltose-binding-U94 recombinant proteins (MBP-U94) in E. coli. Our results suggest that MBP-U94A and MBP-U94B preferentially bind single-strandred DNA containing the CCCTAA motif (complement to the TTAGGG telomeric motif). Surface plasmon resonance (SPR) experiments also indicate that MBP-U94B binds double-stranded DNA containing telomeric motifs. Since the telomerease RNA component TERC contains the CCCTAA motif, we investigated whether MBP-U94 could bind a single-stranded RNA molecule containing the CCCTAA motif. SPR analysis clearly indicates that MBP-U94 does not bind such RNA nor a single-stranded DNA molecule having a single CCCTAA motif, suggesting that more than one motif is required for proper binding. Based on published work on Rep68 (128, 129), we generated specific U94 mutants. Our results indicate that the K395A mutation greatly diminishes U94 binding to DNA pointing out the importance of this residue. ATPase assays were also performed and indicate that both MBP-U94A and MBP-U94B possess the ability to hydrolyze ATP into ADP and AMP when incubated in the presence of DNA. Several other mutants targeting the helicase and endonuclease activities were generated and will be tested in the near future. Altogether these results suggest that U94 has biological properties that are consistent with a role for this protein in the process of chromosomal integration of the HHV-6 genome into the host chromosomes.
Document Type: Mémoire de maîtrise
Issue Date: 2013
Open Access Date: 19 April 2018
Permalink: http://hdl.handle.net/20.500.11794/23947
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
29539.pdfTexte3.48 MBAdobe PDFThumbnail
All documents in CorpusUL are protected by Copyright Act of Canada.