Contribution au développement de recouvrements à base de simili-téflon et de polysaccharide pour les stents

Authors: Fakhari Tehrani, Soudeh
Advisor: Mantovani, D.
Abstract: Cardiovascular diseases are a major cause of death in the world. Atherosclerosis is a progressive disease in which the arteries partially or completely clog. Angioplasty is a clinically validated technique for treatment of atherosclerosis; however, a high restenosis rate remains the limiting factor for angioplasty. The implantation of a stent during angioplasty reduces the rate of restenosis between 15-30%, but the risk of restenosis remains relatively high. Moreover, corrosion and the release of potentially toxic elements are further drawbacks associated with metallic stents. The use of a polymer coating on the metallic stent surfaces can prevent stent corrosion and reduce the restenosis rate. In this study two different types of polymeric stent coatings will be presented. The first part of this research deals with the thin fluorocarbon (CFx) polymeric film deposited by cold plasma on the surface of stainless steel. This coating is assumed to be chemically inert, hydrophobic, and bio-compatible. Use of cold plasma deposition method modulates chemical composition and changes the morphology of the interface in the way that the polymeric film shows a good interfacial adhesion (polymer-metal). However, the aging studies performed on the samples submerged in deionised water show evidence of morphological and chemical degradation of the coating besides demonstrating the substrate oxidation, after only two weeks. To overcome this problem, the influence of a post-treatment was studied. In chapter II, The influence of these treatments on the chemical composition, morphological structure and resistance to aging will be presented. The second part of this research involves the study of dextran-graf-polybutylmethacrylate (dextran-graft-PBMA); dextran is a polysaccharide with interesting biological properties. The dextran derivatives stimulate the proliferation of endothelial cells and inhibit the smooth muscle cells proliferation and blood clotting. It was assumed that the dextran derivative coatings may decrease the rate of restenosis and improve long-term hemocompatibility of the stents. Unfortunately, dextran is highly soluble in aqueous media, therefore cannot directly form a stable film. Furthermore, dextran has poor mechanical properties. A solution to form a more stable coating in aqueous media, while improving its mechanical properties, is the copolymerization of dextran with a synthetic hydrophobic polymer. In this context, the synthesis of copolymer dextran-graf-polybutylmethacrylate seemed to offer a promising alternative. The synthesis of copolymer dextran-graf-polybutylmethacrylate that combines the biological properties of dextran and mechanical properties of poly(butylmethacrylate), might be a potential solution. The project is shared between Laboratoire de Bio-ingénierie de Polymères Cardiovasculaires (LBPC) at Paris 13 University and Laboratoire de Biomatériaux et de Bioingénierie (LBB) in Quebec City. Model samples of 316L stainless steel are prepared at LBB and covered in LBPC and characterized at LBB for the analysis of chemical composition, morphological structure, and mechanical properties of dextan-graft-PBMA coatings.
Document Type: Mémoire de maîtrise
Issue Date: 2012
Open Access Date: 18 April 2018
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
28537.pdfTexte2.75 MBAdobe PDFThumbnail
All documents in CorpusUL are protected by Copyright Act of Canada.