Étude de la robustesse, de l'adhérence et de la durabilité des bétons de réparation à retrait compensé

Authors: Certain, Pierre-Vincent
Advisor: Bissonnette, Benoît; Marchand, J.
Abstract: Drying shrinkage is one of the least desirable properties of repair concrete, because in restrained conditions, it may lead to shrinkage cracking and thus adversely affecting durability. Shrinkage compensating concrete (ShCC) is prone to the same drying shrinkage as Portland cement concrete. During the first days of ShCC’s hydration, the expansive agent, added to the cement, induce an expansion what balances approximately the subsequent normal drying shrinkage. This project outlines the study of the robustness of several ShCC mixtures design, in order to delineate some parameters influencing the behavior of ShCC. Two kinds of expansive agent is used, one based on calcium sulfoaluminate (type K) and the other based on calcium oxide (type G). The assessment of the robustness is divided in two parts : the first one aims to evaluate the influence of mixture design parameters (w/b ratio, cement composition, kind and ratio of expansive agent), the second one aspires to study the influence of curing conditions (water availability, temperature) on the expansive behavior. Then, the bond between ShCC repairs and concrete substrates were investigated. Being aware of the influence of the water availability on the expansion, each ShCC mixture design was added on a “dry” and a “wet” substrate. Finally, the freezing and thawing resistance, the scaling resistance, and the ability to resist chloride ion penetration were performed to assess the durability of ShCC mixture design. This study shows that certain ShCC mixture design can reduce the risk of cracking by maintaining the concrete in a compressive state. A low curing temperature prevents the expansion and harms the shrinkage compensation. The absence of curing results to the same observation. The results of bonding strength were generally acceptable. However, in the case of two mixtures design cast on a « wet » substrate, the ShCC layer deboned. The durability tests show a generally good resistance to freezing and thawing cycle and to scaling, but a high permeability to chloride ions.
Document Type: Mémoire de maîtrise
Issue Date: 2012
Open Access Date: 18 April 2018
Permalink: http://hdl.handle.net/20.500.11794/23486
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
27860.pdfTexte9.99 MBAdobe PDFThumbnail
All documents in CorpusUL are protected by Copyright Act of Canada.