Système de réalité virtuelle pour l'insertion d'aiguilles flexibles dans des tissus déformables : application à la curiethérapie de la prostate

Authors: Carette, Alexandre
Advisor: Laurendeau, Denis
Abstract: Prostate cancer is the most common type of cancer in men. It is estimated that one in six men living up to eighty years will receive the diagnosis. In 1994, the Centre hospitalier universitaire de Québec (CHUQ) became the first healthcare facility in Canada to use permanent implants brachytherapy to treat prostate cancer. Since then, thousands of people benefited from this minimally invasive and very effective treatment. During brachytherapy, a procedure of one to two hours performed under general anesthesia, the radiation oncologist uses needles to place radioactive matter in the form of small seeds directly into the cancerous tissue. The seeds, about the size of a grain of rice, emit radiation that destroy cells in the target area for about six months after the operation. They then remain in place permanently, but are harmless for the person. However, the procedure is not an easy task for the radiation oncologist. In particular, specialists who aspire to give this kind of treatment, although very well trained and supervised, can only be trained using human subjects to gain experience, a practice that may raise ethical issues. We therefore propose the establishment of a virtual reality environment for training in prostate brachytherapy which would have, for new doctors, a role similar to flight simulators for aircraft pilots. In this thesis, we present different algorithms to generate a realistic model of the prostate and its surrounding environment, the simulation of the physics of organic soft tissue and of flexible needles, as well as the interaction between them. These algorithms allow a three-dimensional view of the operation, to which we add an extension that allows the user to view the operation as images by ultrasonography. The integration of all these modules with a module that can simulate haptic feedback when inserting needles (developed by our collegues in mecanical engineering) forms the proposed virtual environment.
Document Type: Mémoire de maîtrise
Issue Date: 2012
Open Access Date: 18 April 2018
Permalink: http://hdl.handle.net/20.500.11794/23363
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
28689.pdf103.72 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.