Développement de nouveaux adjuvants dérivés de pseudoparticules du virus de la mosaïque de la papaye

Authors: Savard, Christian
Advisor: Leclerc, DenisMajeau, Nathalie
Abstract: Vaccination is one of the human interventions that having the most contributed to the decrease of mortality attributed to infectious diseases. The successes recorded by the traditional vaccines, composed of attenuated or inactivated pathogens, were principally obtained by the induction of neutralizing antibodies. Now, this correlate of immunologic protection is no longer suitable for new emergent pathogens such as the hepatitis C virus or the human immunodeficiency virus that equally require the stimulation of a strong T-cell response. An interesting solution to this problem is the addition of adjuvants to vaccines, a method known to increase the breadth and diversity of the immune response against the vaccine. However, few adjuvants are known for their ability to generate cellular responses and no adjuvant of this type is available for human vaccination in North America. To this end, the virus-like particles (VLP) of Papaya mosaic virus (PapMV) have previously demonstrated potential adjuvant effect towards the cellular responses. The objective of my Ph.D. thesis was to study the adjuvant potential of the PapMV VLPs on commercial vaccines and on complete protein targets. First, we evaluated the effect of PapMV VLPs adjuvant on the inactivated vaccine used to fight the influenza virus. Secondly, we evaluated the adjuvant effect of this adjuvant, and the high avidity version, on the nucleoprotein (NP) of influenza virus, a promising target to develop a universal vaccine against this important pathogen. Finally, we evaluated the possibility of developing a candidate vaccine against the hepatitis C virus (HCV) based in whole or in part on the core protein of HCV, the most conserved protein of the virus, in combination with our adjuvant. Overall, the adjuvant was effective of increasing the immunogenicity of all vaccine targets used and even helped to increase the protective effect generated by the inactivated influenza vaccine and the NP protein. Its usefulness for the development of a protective vaccine against hepatitis C based solely on the core protein, remains to be determined.
Document Type: Thèse de doctorat
Issue Date: 2011
Open Access Date: 18 April 2018
Permalink: http://hdl.handle.net/20.500.11794/23268
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
27890.pdf3.2 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.