Génomique fonctionnelle des protéines de division cellulaire et du peptidoglycane : développement de nouveaux agents antibactériens

Authors: Paradis-Bleau, Catherine
Advisor: Lévesque, Roger C.
Abstract: This thesis first presents the critical outcome of antibiotic resistance among emerging and re-emerging bacterial pathogens worldwide. The incessant increase and spread of antibiotic resistance mechanisms compromise the efficiency of available antibacterial therapies and increase the impact of bacterial infections on human mortality and morbidity. This thesis focuses efforts to identify new antibacterial targets in order to develop novel classes of antibacterial agents using the opportunistic pathogen Pseudomonas aeruginosa as a research model. The first chapter of this thesis reports the exploitation of the cell division proteins FtsZ and FtsA as antibacterial targets. A detailed scientific review is presented along with two articles reporting the synthesis and selection of inhibitors against FtsZ and FtsA. These inhibitors represent potent candidates to develop new classes of antibacterial agents targeting the bacterial cell division process. The second chapter describes the use of the essential bacterial cell wall biosynthesis enzymes MurC, MurD, MurE and MurF as antibacterial targets. A scientific review first summarises the biology of these amide ligase enzymes and three scientific articles report the selection of peptide inhibitors against MurD, MurE and MurF by phage display. The novel mode of action of these inhibitors against the unexploited Mur enzymes can be the basis for future development of antibacterial agents targeting the cell wall biosynthesis pathway by peptidomimetism. The last chapter exposes the antibacterial potential of the phage-encoded endolysin enzymes. A review describes the mode of action and the biology of endolysins as efficient antibacterial agents targeting the integrity of the bacterial cell wall layer. Finally, an article presents the peptidoglycan hydrolytic activity of the P. aeruginosa phage ΦKZ gp144 lytic transglycosylase. This endolysin is able to pass through the bacterial membranes and thus represents a strong candidate for developing new antibacterial therapies against Gram-negative bacteria. In conclusion, this thesis provides various attractive ways to develop new antibacterial strategies and face the problem of antibiotic resistance.
Document Type: Thèse de doctorat
Issue Date: 2007
Open Access Date: 18 April 2018
Permalink: http://hdl.handle.net/20.500.11794/22979
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
24377.pdf8.8 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.