Revêtements nanocomposites anti-UV pour le bois à usage extérieur

Authors: Vlad-Cristea, Mirela Simona
Advisor: Blanchet, PierreRiedl, Bernard
Abstract: The forest products designated to architectural or exterior decorative applications are often disadvantaged by their limited durability and appearance preservation. High performance exterior wood coatings demand, green technologies and the VOCs environmental legislations push industry to develop waterborne formulations that pose equivalent or superior performance as the solventborne ones. Consequently, the main objective of this project is to improve the exterior wood durability by using waterborne nanocomposite coatings that contain nanosized inorganic UV absorbers. Surface modified ZnO and TiO2 nanoparticles against photocatalytic choose to disperse under powder and water-based dispersions into a commercial waterborne acrylic stain formulation for deck from Sico Ltd. Montreal – Akzo Nobel, Canada. The durability of nanocomposite coatings supported by black spruce wood was studied by artificial aging. Nanocomposites coatings degradation was followed by appearance (gloss and color measurements), thickness, glass transition temperature (Tg) and mechanical properties (adhesion, abrasion, hardness and elastic modulus) changes. Photo-oxidation products growth on the degraded surface of aged wood coatings was monitorized by Fourier Transform - Infrared Spectroscopy. Atomic force microscopy was used to visualise the aged coatings degraded surface in order to establish their mechanism of degradation under artificial exposure. The nanoparticles dispersion quality in the dry nanocomposites films and also films adherence on the wood substrate were verified by scanning electron microscopy and transmission electron microscopy. The thermal analysis (DSC and TGA) and water vapour permeability were employed for a better characterization of the new nanocomposite coatings. In conclusion, an efficient UV protection is directly connected with an homogeneous dispersion of the nanoparticles in nanocomposite coating. Dispersant compatibility that was used to predisperse the nanoparticles and modification type of nanoparticles are crucial in preventing nanoparticles agglomeration in the dry coating. Finally, a series of high performance nanocomposites coatings was selected. The obtained results confirm the advantage of using inorganic nanosized UV absorbers in exterior coatings and consequently various possibilities of nanotechnologies applications are open into reformulating waterborne coating for wood.
Document Type: Thèse de doctorat
Issue Date: 2011
Open Access Date: 18 April 2018
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
28367.pdf32.45 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.