Fundamentals aspects of crosslinking control of PDMS rubber at high temperatures using TEMPO nitroxide

Authors: Mani, Skander
Advisor: Cassagnau, Philippe; Kaliaguine, S.
Abstract: The control of macromolecular structure has recently become an important topic of polymer science from both an academic and an industrial point of view. Indeed, free-radical crosslinking of Polydimethyl-vinylmethyl-siloxane (vinyl-PDMS) rubber by organic peroxide suffers from premature crosslinking at high temperatures, which is called scorching. Consequently, the basic aim of the investigations described in this thesis is to widen and explore the network topology–crosslinking kinetics relationships and find a novel way to control free-radical crosslinking chemistry and topological parameters of final PDMS networks. The work is primarily focused on the extensive study of the crosslinking control of PDMS rubber at high temperatures. A novel composition using 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) and dicumyl peroxide (DCP) for scorch delay and control of the final network topology of the PDMS has been proposed. The work specified in this thesis is therefore directed to find a proper [TEMPO]/[DCP] ratio provided the development of a new biphasic material such as PA12/PDMS blend type TPV (Thermoplastic Vulcanizated). For this purpose a new method based on the relationship between the kinetics of the macro-radicals coupling [Rcc(t)] was derived from a fundamental kinetic model and the viscoelastic changes of the complex shear modulus (G’(t) and G”(t)). The kinetic model takes into account the initiator (DCP) decomposition and the trapped PDMS macro-radicals in the presence of a radical scavenger such as TEMPO. As a main result, the rheological modelling shows that this new method accurately predicts the time variation of complex shear modulus at any temperature and [TEMPO]/[DCP] ratio. Interestingly, addition of TEMPO to the TPV novel composition provided the PA12/PDMS blend compatibilization in the dynamic process and gives a new material having a controlled structure and morphology. A better insight in understanding the blend composition and the morphology development relationships is aimed at.
Document Type: Thèse de doctorat
Issue Date: 2011
Open Access Date: 18 April 2018
Permalink: http://hdl.handle.net/20.500.11794/22941
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
27984.pdf2.62 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.