Gold cyanidation revisited -- Kinetic & electrochemical studies of gold -- Sulfidic ore mixed/multilayer fixed beds

Authors: Azizi, Abdelaaziz
Advisor: Larachi, FaïcalPetre, Cătălin Florin
Abstract: To elucidate the role of sulfide ores on gold cyanidation, a detailed study on the relative importance of passivation phenomena (PP) and galvanic interactions (GI) was carried out in the present thesis work. A Rotating Disc Electrode (RDE) Au/Ag disc immersed successively in slurries of a wide range of sulfide rich ores emphasized the negative impact of sulfide minerals on the gold leaching rate. Because permanent GI between gold RDE and slurried sulfide-rich ores are uneasy to achieve, the standard gold RDE/slurry cyanidation arrangement has a tendency to inflate overly the importance of PP over the corrective trend of GI inherently present within the ore grains. A new packed-bed electrochemical reactor (PBER) was thus developed and tested to decouple and quantify the individual contributions of PP and GI on precious metal (gold and silver, PM) leaching rates during cyanidation of sulfidic ores. The PBER was filled with mixtures of sulfide minerals, gold and silver powders, where permanent (inter)particle-particle electrical contacts were ensured among all constituents. GI were found to ameliorate, to various degrees, the leaching of PM, particularly those due to pyrite, chalcopyrite and an industrial ore were so positive that they largely outweighed the negative impact of PM passivation. Extending the new PBER approach to consider the mineralogical characteristics of several multi-mineral systems indicated that GI between gold and sulfide mineral particles were the most important parameters affecting gold leaching. Several leveraging strategies were tested to increase gold cyanidation kinetics in the presence of PM-leaching inhibiting sulfide minerals. Galena was found to largely neutralize the negative effect of sulfide minerals dissolution on gold leaching. Pre-oxidation tested on individual sulfide minerals and on their associated mixtures revealed that GI occurring between conducting phases present in the ore may give rise to totally different cyanidation responses.
Document Type: Thèse de doctorat
Issue Date: 2011
Open Access Date: 17 April 2018
Permalink: http://hdl.handle.net/20.500.11794/22529
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
28270.pdf11.2 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.