Pré-dimensionnement du dispositif de stockage énergétique d'un autobus de transport urbain

Authors: Longchamps, Jean
Advisor: Dubois, Maxime
Abstract: Urban transit buses have furrowed our roads for a long time now. Both reliable and economical, these vehicles have become one of the most popular mean of transportation to commute passengers throughout entire cities. Unfortunately, the ever-increasing emissions of pollutants caused by the burning of gasoline of these buses, have urged the government authorities to take due reforms in the transport sector so that more and more alternatives are proposed. In this context, the electric buses have recently been identified as viable and promising alternative for reducing emissions of pollutants in cities. Since the technology behind the electrification of urban buses is still young, there is a growing interest on how we should scale its main components such as its engine and its power source. The work presented in this paper contributes in the development of a tool that allows a user to have an idea on the size of the energy source and the electric motor of the bus. The tool allows among others to determine the dimensional parameters of the bus that reflect the choice of vehicle dynamic performance. In deriving the mathematical equations that govern the behavior of the bus, one can develop simulation tool software. By configuring the tool according to the needs of a dimensional study, we come to offer bus designs that meet different situations of use. After analyzing the results from more than 150 simulations, we can show that the size of the energy source depends essentially on the choice of battery type, autonomy target and driving cycle used by the bus. Other results show that the use of the source to meet the energy needs of the heating system of the bus in winter is not advisable. Indeed, in almost all cases, the amount of energy used from heating corresponds approximately to half the available energy source. Finally, we can show that the combined use of supercapacitors and batteries, for low autonomy targets, further reduces the dimensions of the source needed to meet performance criteria.
Document Type: Mémoire de maîtrise
Issue Date: 2011
Open Access Date: 17 April 2018
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
27831.pdfTexte7.75 MBAdobe PDFThumbnail
All documents in CorpusUL are protected by Copyright Act of Canada.