The transcriptome of human epicardial, mediastinal and subcutaneous adipose tissues in men with coronary artery disease

Authors: Guauque-Olarte, Sandra
Advisor: Bossé, Yohan
Abstract: Increased visceral adipose tissue has been associated with the development of cardiovascular diseases (CVD). Epicardial adipose tissue (EAT) is the visceral fat depot located on the surface of the heart especially around the epica rdial coronary vessels with extension into the myocardium. The proximity of EAT to the coronary arteries suggests a role in the pathogenesis of coronary artery disease (CAD). EAT thickness was significantly correlated with the severity of CAD. However, the biological functions of EAT and its relationship with the development of CVD remain largely elusive. The objectives of this study were to identify genes that were up- or down-regulated among three distinct adipose tissues, namely EAT, mediastinal and subcutaneous using whole-genome gene expression microarrays and to study the possible relationships of these genes with the development of CVD. Overall, the transcriptional profiles of EAT and mediastinal adipose tissue were similar compared to subcutaneous adipose tissue. Despite this similarity, a number of genes involved in cardiovascular diseases were up-regulated in EAT. The expression of the adenosine A1 receptor (ADORA1), involved in myocardial ischemia, was significantly up-regulated in EAT. Levels of the prostaglandin D2 synthase (PTGDS) gene, recently associated with the progression of atherosclerosis, were significantly different in the three pairwise comparisons (epicardial > mediastinal > subcutaneous). Overexpression of ADORA1 and PTGDS in EAT may confer cardioprotection against myocardial ischemia and CAD. This study is an important first step to understand the biological function of EAT and its potential implications in CVD.
Document Type: Mémoire de maîtrise
Issue Date: 2011
Open Access Date: 17 April 2018
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
28083.pdfTexte3.65 MBAdobe PDFThumbnail
All documents in CorpusUL are protected by Copyright Act of Canada.