Dynamic phenotypes of degenerative myxomatous mitral valve disease : quantitative 3-dimensional echocardiographic study

Authors: Clavel, Marie-Annick; Mantovani, Francesca; Malouf, Joseph; Michelena, Hector I.; Vatury, Ori; Jain, Mothilal Sonia; Mankad, Sunil V.; Suri, Rakesh M.; Enriquez-Sarano, Maurice
Abstract: Background—Fibro-elastic deficiency (FED) and diffuse myxomatous degeneration (DMD) are phenotypes of degenerative mitral valve disease defined morphologically. Whether physiological differences in annular and valvular dynamics exist between these phenotypes remains unknown. Methods and Results—We performed triple quantitation of cardiac remodeling and of mitral regurgitation severity and of annular and valvular dimensions by real-time 3-dimensional-transesophageal-echocardiography. Forty-nine patients with degenerative mitral valve disease classified as FED (n=31) and DMD (n=18) by surgical observation showed no difference in age (65±10 versus 59±13; P=0.5), body surface area (2.0±0.2 versus 2.0±0.2 m2; P=0.5), left ventricular and atrial dimensions (all P>0.55), and mitral regurgitation regurgitant orifice (P=0.62). On average, annular dimensions were larger in DMD versus FED, but height was similar resulting in lower saddle shape. Dynamically, annular DMD versus FED display poorer contraction and saddle-shape accentuation in early systole and abnormal enlargement, particularly intercommissural, in late-systole (all P<0.05). Valvular dynamics showed stable valvular area in systole in FED versus considerable systolic increased area in DMD (P<0.001). Prolapse height and volume increased little throughout systole in FED versus marked increase in DMD (P<0.001). Conclusions—Our novel observations show that FED and DMD, although both labeled myxomatous, display considerable physiological phenotypic differences. In DMD, the annular increased size and profoundly abnormal dynamics demonstrate DMD-specific annular degeneration compared with the enlarged but relatively normal FED annulus. DMD does not incur more severe mitral regurgitation, despite larger prolapse and valve redundancy, underscoring potential compensatory role of tissue redundancy of DMD (or aggravating role of tissue paucity of FED) on mitral regurgitation severity.
Document Type: Article de recherche
Issue Date: 1 May 2015
Open Access Date: Restricted access
Document version: VoR
Permalink: http://hdl.handle.net/20.500.11794/2249
This document was published in: Circulation: Cardiovascular Imaging, Vol. 8 (5), 1-10 (2015)
American Heart Association
Alternative version: 10.1161/CIRCIMAGING.114.002989.)
Collection:Articles publiés dans des revues avec comité de lecture

Files in this item:
Description SizeFormat 
ClavelMA-Circ Cardiovasc Imaging-2015.pdf
918.34 kBAdobe PDF    Request a copy
All documents in CorpusUL are protected by Copyright Act of Canada.