Monitoring and mathematical modeling of in vitro human megakaryocyte expansion and maturation dynamics

Authors: Leysi-Derilou, Younes
Advisor: Garnier, AlainDuchesne, Carl
Abstract: Megakaryopoiesis is a complex process, which is initiated with the proliferation and the differentiation of hematopoietic stem cells (HSC) into megakaryocytes (MK), followed by the maturation of MK and ended by platelet release. To describe the fates of HSC during ex vivo megakaryopoiesis, a new mathematical model was developed based on a 3-dimensional kinetic developmental program. To address this, a set of differential equations was applied to analyze the proliferation, differentiation and death kinetic rates of purified cord blood (CB)-CD34+ cells, immature and mature MKs, as well as platelet number and productivity. CB-CD34+ cells were placed in culture optimized for MK differentiation. The kinetic parameters were estimated for two incubation temperatures (37°C vs. 39°C). The regression results have been validated by assessing the parameter identifiability using local and global sensitivity analyses and confidence intervals, and compared using statistical tests and principal component analysis (PCA). Furthermore, PCA was applied on the solution matrix to construct a simplified MK differentiation pathway model, and to reveal dependencies among the model parameters. The proposed model provides insight into phenomena that would be otherwise difficult to interpret. MKs are unique among mammalian marrow cells as they polyploidize during their natural development. It is universally accepted that MK becomes polyploid by repeatedly deviating from normal cell cycling, where it ceases to complete cytokinesis and divide. To challenge this long-standing hypothesis and to obtain a more comprehensive picture of megakaryopoiesis, a long-term and large-field live cell imaging approach of in vitro MK culture was developed. Using CB- and bone marrow (BM)-CD34+ as starting cells, the direct observation of cells undergoing differentiation and maturation over a 5-day culture period is reported for the first time. Herein, direct visual proof that polyploid MKs can complete cytokinesis during its normal development is presented. This phenomenon was found not restricted to CB- as the BM-derived polyploid MK also underwent division. However the latter showed significantly lower proliferation rate. This new finding explains in part the unresolved issue of low ploidy levels observed in CB-MK and contests the notion that polyploid MKs do not divide.
Document Type: Thèse de doctorat
Issue Date: 2011
Open Access Date: 17 April 2018
Permalink: http://hdl.handle.net/20.500.11794/22385
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
27968.pdf5.76 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.