Langage de programmation pour les simulations géoréférencées à base d'agents

Authors: Garneau, Tony
Advisor: Moulin, Bernard; Delisle, Sylvain
Abstract: In the last decade, technologies based on software agents have been used in many domains such as video games, movies containing animated characters, virtual reality, in visual interfaces development where “wizards” are supplied and in educative Web applications using virtual characters, just to name a few. In many of these domains, agent-based simulations require the integration of geographic data. These add a spatial dimension and allow the simulation of many complex phenomena such as those included in urban dynamics. This has spawned a new research field: Multi-Agent- Geo-Simulation (MAGS for short). Some of the frameworks developed for MAGS use many different techniques to specify and implement tagent-based simulations. However, the agents’ behaviors that can be specified are usually very limited and are insufficient for the development of geo-referenced simulation of social phenomena. In this type of simulation, the agents must act autonomously and have the ability to perceive the environment in which they evolve, and then take decision based on these perceptions. To benefit from such characteristics, we consider that these agents must minimally have a perception mechanism that is autonomous and unique to each agent which need as well as to be proactive and have autonomous behavior in relation to their virtual environment. The specification of this type of agent is a difficult task and, to the best of our knowledge, none of the existing development environment offers a language able to fulfill it. In the context of the PLAMAGS (Programming LAnguage for Multi-Agent Geo-Simulations) Project, we developed a new agent-oriented programming language, an applied design methodology and an integrated development environment that allow a quick and simple design and execution cycle of agent-based geo-referenced simulations. The main contributions of this work are as follows: - A full-fledged descriptive programming language, procedural and object-oriented that is usable at every stage of the development cycle and that is dedicated to MAGS. This language eliminates the transition and transposition from the theoretical model to the programming language and thus avoids all the difficulties inherent to such a transposition task. - An applied development methodology where the modeling, design and implementation, execution and validation steps are merged and integrated throughout the development cycle. - A behavioral model that is powerful (agent wise), intuitive, modular, extensible and flexible and thus allows a sequential and iterative development using abstractions based on decomposition (sub-behaviors). - A spatialized interaction model that is clearly defined and directly integrated in the primitives of the programming language.
Document Type: Thèse de doctorat
Issue Date: 2011
Open Access Date: 17 April 2018
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
27803.pdfTexte10.14 MBAdobe PDFThumbnail
All documents in CorpusUL are protected by Copyright Act of Canada.