Geothermal system optimization in mining environments

Authors: Raymond, Jasmin
Advisor: Therrien, René
Abstract: Resources associated to mining environments, such as mine water and exothermic waste rock, allow a reduction of installation costs of ground source heat pump systems. Compared to other environments, caution is required when designing systems in mining environments because of enhanced hydraulic conductivity created by mine voids or heat generation due to oxidation of minerals. The objective of this study is to simulate the operation of geothermal systems on mine sites to demonstrate energy savings and promote installation. Numerical modeling approaches are developed with the program HydroGeoSphere applied for case studies conducted at the Gaspé Mines in Murdochville and at the South Dump of the Doyon Mine in Abitibi. A groundwater heat pump system at the Gaspé Mines is optimized with a numerical model, where 1D and 3D elements are superposed to adequately represent the mine voids. The simulations show that the system can be operated using former mining shafts to avoid drilling boreholes. Waste rock of the South Dump is initially characterized with a conventional thermal response test analyzed with the lines-source equation and the superposition principle accounting for variations of heat injection rates. A numerical method is also developed to analyze the test that was affected by the heterogeneity of materials and the strong geothermal gradient. The overburden and the host rock below the dump are characterized with a novel thermal response test using heating cables. Numerical simulations then reproduce the temperature distribution during typical tests, which homogenizes rapidly during the recovery period allowing the analysis of temperature inside the borehole without knowing the position of the sensor. The operation of a ground-coupled heat pump system installed under the South Dump is finally simulated. The optimization of heating loads indicates that the heat exchanger located beneath the waste pile can provide more thermal energy than an exchanger located in a conventional environment, reducing bore length required for a given system.
Document Type: Thèse de doctorat
Issue Date: 2010
Open Access Date: 16 April 2018
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
27626.pdfTexte10.22 MBAdobe PDFThumbnail
27626_annexe.zip536.08 kBArchive ZIPView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.