Activation du facteur de transcription Hypoxia-Inducible Factor-1 par la sphingosine-1-phosphate chez les cellules vasculaires

Authors: Michaud Dumont, Maude
Advisor: Richard, Darren Edward
Abstract: Hypoxia-inducible factor-1 (HIF-1) is a ubiquitous heterodimeric transcription factor responsible for the activation of many genes essential for adaptation to low oxygen conditions. Among these genes, HIF-1 strongly induces vascular endothelial growth factor (VEGF), a potent angiogenic molecule. Therefore, HIF-1 plays a crucial role in vascular cell biology and the formation of new blood vessels. Recent studies have clearly shown that sphingosine-1-phosphate (S1P) is also a key player in the angiogenic process. Released into circulation mainly upon platelet activation, this bioactive phospholipid binds to and activates specific receptors located on vascular endothelial (ECs) and smooth muscle cells (VSMCs). This leads to the stimulation of a wide range of essential vascular cell responses like proliferation, migration and survival, which are crucial in the regulation of the vascular system. Other studies have shown that non-hypoxic stimuli can also activate HIF-1 in oxygenated conditions. Since S1P and HIF-1 are both important regulators of vascular cell biology and especially angiogenesis and that they are also both implicated in the pathogenesis of different diseases like atherosclerosis and cancer, the goal of the present thesis was to determine whether S1P can modulate the vascular induction and activation of HIF-1 and to identify the molecular mechanisms underlying this activation. Briefly, we show that treatment of ECs and VSMCs leads to a strong induction of HIF-1α protein levels through the specific activation of the S1P type-2 receptor in a time and dose-dependant manner. We also demonstrate that the S1P-dependant HIF-1 nuclear complex formation, achieved through pVHL-independent (protein von Hippel-Lindau) stabilization of HIF-1α, is transcriptionally active and specifically binds to hypoxia-responsive elements. Moreover, S1P activates the expression of genes known to be closely regulated by HIF-1 and this induction could be blocked by the use of RNA interference oligonucleotides targeting HIF-1α protein. Thus, this work identifies S1P as a novel and potent non-hypoxic activator of HIF-1. We believe that understanding the role played by HIF-1 in S1P gene regulation will have a strong impact on different aspects of vascular biology.
Document Type: Thèse de doctorat
Issue Date: 2010
Open Access Date: 16 April 2018
Permalink: http://hdl.handle.net/20.500.11794/21362
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
27006.pdf13.07 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.