Fonctionnalisation de surface de polymères par plasma à la pression atmosphérique : amination de surface et dépôt de couches minces par un procédé de décharge par barrière diélectrique

Authors: Sarra-Bournet, Christian
Advisor: Laroche, Gaétan
Abstract: The objective of this thesis was to develop surface modification processes using atmospheric pressure plasma for the surface functionalization of polymers with amino groups (NH2) for biomedical applications. Developing a process working at atmospheric pressure aims to eliminate the need for a pumping system, thus obtaining a technology that would be efficient and low cost for an industrial process. The plasma generation mode chosen was a dielectric barrier discharge (DBD). Two surface modification strategies were investigated: Surface plasma amination and plasma thin film deposition. The two different types of surface modifications were characterized by X-Ray Photoelectron Spectroscopy (XPS), Time of Flight Secondary Ion Mass Spectrometry (ToF SIMS), Fourier Transform Infrared Spectroscopy (FTIR), Contact Angle goniometry (CA), Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). On one hand, surface plasma amination, results demonstrate the importance of H2 and its derived species for amino groups functionalization on the surface of polymers in an atmospheric pressure DBD in N2-H2. Moreover, the obtained knowledge allows now the possibility to control and optimize the surface density and surface modification specificity for amino groups. On the other hand, the functionalized thin films obtained in an atmosphere of N2-C2H4 reveals a highly variable nitrogen concentration as a function of the reactive gas/carrier gas (C2H4/N2) while the surface density in amino groups is constant. Sticking coefficients and/or surface mobility of the different species created as a function of time residence in the discharge lead to different coating morphologies. The addition of H2 in the discharge leads to the formation of nanoparticles and new structures, named “nanorods” that present anisotropic dimensions (100-200 nm in diameter for 1-10 m in length). Finally, atmospheric pressure DBD surface functionalization is an efficient and low cost technique for the creation of uniform surface modification with amino groups that can be later used to covalently graft various chemicals functionalities; chemical functionalities that can be used for various applications.
Document Type: Thèse de doctorat
Issue Date: 2009
Open Access Date: 16 April 2018
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
26904.pdf11.65 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.