Détermination des propriétés de transfert de chaleur et de masse des panneaux de fibres de bois

Authors: Belley, Denis
Advisor: Cloutier, Alain; Deng, James
Abstract: Numerous mathematical models have been developed to predict the behaviour of medium density fiberboard panels (MDF) during the hot pressing process. However, despite these efforts, it still remains many parameters to define precisely in order to describe correctly the physical phenomena occurring during the hot pressing process. This project was focused on the determination of the parameters required for a finite element model of the MDF panels hot pressing process. More specifically, the project objectives were the determination and analysis of thermal conductivity and permeability in relation with different factors such as particle size, moisture content, density and temperature of the MDF panel. The MDF panels used for the project were made of black spruce fibers (Picea mariana) of three fiber sizes and five different densities. Black spruce (Picea mariana) fibers were chosen because they are used for the manufacture of most of the MDF panels produced in Eastern Canada. The methods chosen to determine gas permeability and thermal conductivity have been used by many other researchers. The results obtained show that fiber size has no significant impact on the gas permeability of MDF panels. However, density had a significant effect on gas permeability. Indeed, the higher the density, the lower the gas permeability which is in agreement with the literature on the subject. The results of thermal conductivity were between 0,06 and 0,25 W/mºC according to density, fibre size and moisture content. Precisely, the results have shown that the thermal conductivity of MDF panels increases with density, moisture content and temperature up to a certain point as the theory mentions. However, for thermal conductivity, a significant difference was noticed between the large fiber size class panels and the average and small fiber size class panels. The last two classes had a similar behaviour all along the test while the large fiber size panels behaviour was different for the variables studied.
Document Type: Mémoire de maîtrise
Issue Date: 2009
Open Access Date: 16 April 2018
Permalink: http://hdl.handle.net/20.500.11794/21312
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
26716.pdfTexte2.63 MBAdobe PDFThumbnail
All documents in CorpusUL are protected by Copyright Act of Canada.