Étude des propriétés optiques (plasmons de surface localisés) en fonction de la structure de films auto-assemblés de nanoparticules d'or

Authors: Yockell-Lelièvre, Hélène
Advisor: Ritcey, Anna Marie
Abstract: This is a study of the specific optical properties of metal nanoparticles, called localized surface plasmon resonance, inside an ordered self-assembled bidimensional array designed entirely by chemical synthesis. Knowing that the near-field dipolar plasmon coupling phenomena between two neighbouring particles takes the shape of a strong aborption band in the visible which frequency shifts exponentially as a function of the inter-particle gap, we propose here a study of the independent influence of structural parameters such as the particles' diameter and inter-particle gap over the spectrum of the array. We therefore developped a method for the synthesis of polystyrene-capped gold nanoparticles allowing us to control both the size and the length of the polystyrene chains, independently. These particles re-disperse in most organic solvents, and spontaneously self-organise into 2D hexagonal arrays when cast onto many solid substrates (glass, carbon, mica, silicium). This 2-step grafting procedure can be applied to metal particles of different size and shape, and generates a grafting density that is high enough so the chains adopt a «brush» conformation. The mean distance between the particles inside the array varies with the molecular weigth of the grafted polymer chains. The optical properties of the glass-deposited films were then analysed using a specific spectroscopic setup based on the use of an optical waveguide as the detector (optical waveguide lightmode spectroscopy, OWLS). This setup made it possible to isolate the contributions from both dipolar coupled plasmon modes, namely the longitudinal and the transverse mode. Using discrete dipole approximation (DDA) simulations, it was observed that the longitudinal mode is responsible for the red shift of the plasmon peak with decreasing relative inter-particle gap. The evolution of that red-shift take the shape of an exponential decay with two distinct rates, the decay constant being significantly higher when the relative interparticle gap reached 1.25. The experimental value of the decay constant obtained from the synthesised films, in which the interparticle gap is always above 1.25, is close to the calculated value over that range. The OWLS setup was also used to study the 2D self-assembly mechanism of solvated alcanethiol-capped gold nanoparticles samples as the solvant evaporates when a drop is deposited onto a solid surface. We monitored the time-resolved progressive shift of the plasmon peak during the evaporation process with a resolution of 0.2 s. A direct relationship was established between the plasmon wavelength and the inter-particle distance using DDA-calculated data, and it was possible to correlate the change in the mean distance between the particles inside the sample during the evaporation process. This shed some light on the self-organisation dynamics, explaining structural differences observed by microscopy on samples coated with alkyl chains of different lengths.
Document Type: Thèse de doctorat
Issue Date: 2009
Open Access Date: 16 April 2018
Permalink: http://hdl.handle.net/20.500.11794/21285
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
26476.pdf13.29 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.