Caractérisation structurale et dynamique de la Beta-Lactamase TEM-1 de la bactérie Escherichia coli par RMN liquide

Authors: Savard, Pierre-Yves
Advisor: Gagné, Stéphane
Abstract: Antibiotic resistance in pathogenic bacteria represents a major obstruction in our struggle against infectious diseases. The main cause of this resistance is the production by bacteria of enzymes called β-lactamases which possess the ability to hydrolyse the amide bond of β lactam antibiotics. TEM-1 β-lactamase is the most frequently implicated and is the major source of resistance to penicillins and cephalosporins. Although being extensively studied, subtleties in the mechanism of action of this protein remain misunderstood. This thesis presents the results obtained from TEM-1 characterisation by NMR. We carried out resonance assignment for this 263 residues protein (28.9 kDa). As the analysis of internal dynamics of enzymes is essential for the understanding of processes implicated in their mechanism of action, we studied the dynamic properties of TEM-1. Experimental data (R1, R2, and {¹H}-15N-NOE) allowed us to characterize internal motions. Our results highlight the extreme rigidity of TEM-1 on the picosecond to nanosecond timescale. In addition, we observed the presence of slow motions (μs-ms) affecting the relaxation of residues located in the Ω-loop and in the vicinity of the active site. Elucidation of TEM-1’s 3-D structure in solution provided us with additional evidences of the presence of these movements which may be involved in catalysis. As it was proposed that Tyr105 could play a role in substrate recognition and binding in TEM-1, we studied the effects of several mutations at this position. Our results indicate that the environment as well as motions of several other residues were affected by these changes. As some of these residues are far from the active site, we believe that concerted motions between residues located in the vicinity and those further from the active site can play an important functional role in TEM-1. This work brings new data on TEM-1 and possibly on other class A β-lactamases, thus contributing significantly to the improvement of knowledge in the domain of antibiotic resistance.
Document Type: Thèse de doctorat
Issue Date: 2008
Open Access Date: 13 April 2018
Permalink: http://hdl.handle.net/20.500.11794/20559
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
25915.pdf7.63 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.