Modèle de Ruijsenaars-Schneider supersymétrique et superpolynômes de Macdonald

Authors: Veilleux, Vincent
Advisor: Mathieu, PierreDesrosiers, Patrick
Abstract: Le modèle de Ruijsenaars-Schneider trigonométrique (tRS) quantique est un problème à N corps relativiste intégrable qui généralise le modèle de Calogero-Moser- Sutherland trigonométrique (tCMS). Les fonctions propres du modèle tRS sont les polynômes de Macdonald. La limite non relativiste qui relie les modèles tRS et tCMS est la même qui lie les polynômes de Macdonald et de Jack, les fonctions propres du modèle tCMS. Le but de ce mémoire est d'explorer la possibilité d'étendre le succès obtenu avec l'extension supersymétrique du modèle tCMS au modèle tRS. Le cas échéant, les superpolynômes de Macdonald pourraient être définis. Dans l'approche considérée, obtenir un coproduit diagonal de l'algèbre de Hecke est essentiel, mais n'a pas été possible pour TV > 2. On présente donc les résultats partiels connus pour le cas supersymétrique à deux et trois variables ainsi que la nature des obstacles qui, jusqu'à maintenant, ont empêché d'obtenir la généralisation voulue.
Document Type: Mémoire de maîtrise
Issue Date: 2008
Open Access Date: 13 April 2018
Permalink: http://hdl.handle.net/20.500.11794/20227
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
25622.pdf7.83 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.