Bayesian analysis of volatility models with semi-heavy tails, skewness and leverage effects

Authors: Amedah, Sid Ali
Advisor: Gordon, Stephen
Abstract: Cette thèse considère des modèles de volatilité où la distribution conditionnelle des données est un cas particulier de la loi "Generalized Hyperbolic" de Barndorff-Nielsen (1977). Ces modèles permettent de capter les principales caractéristiques des séries financières à haute fréquence, à savoir le groupement de volatilité (volatility clustering), l'excès de kurtosis et de skewness ainsi que l'effet de levier qui s'applique au rendements des marchés boursiers. Etant donnée la forme fortement non linéaire de cette densité, nous utilisons l'approche Bayesienne basée sur les méthodes Markov Chain Monte Carlo pour l'estimation et l'inférence Cette approche est relativement simple à mettre en oeuvre et permet une inférence exacte et valable en échantillon fini ainsi que la comparaison de modèles qui ne sont pas forcément emboîtés. A titre illustratif, nous proposons des applications empiriques en employons des données journalières de l'indice boursier S&P500. D'abord, nous considérons un modèle de volatilité stochastique basé sur un mélange des lois normale et inverse-Gaussien où la variance conditionnelle est considérée comme un processus stochastique latent généré par la loi inverse-Gaussian. Conditionnellement à la volatilité, la loi des données est une normale. Il en résulte la loi normal inverse Gaussian (NIG) de Barndorff-Nielsen (1997) pour les données qui présente beaucoup de flexibilité pour capter les excès de kurtosis et de skewness. Dans ce modèle la volatilité est traitée de façon similaire aux paramètres du modèle et elle est simulée par l'échantillonneur de Gibbs. Ce modèle s'avère plus performant que les modèles GARCH asymétriques de Ding et al (1993). Par ailleurs, nous proposons les lois NIG de Barndorff-Nielsen (1997) et GH-skew student de de Barndorff-Nielsen et Shepard (2001) comme densités alternatives aux modèles GARCH asymétriques. Formellement, nous considérons deux modèles GARCH asymétriques à la Ding et al (1993), l'un avec une loi NIG et l'autre avec une loi GH-skew student. Dans ce contexte la volatilité est calculée de façon récursive sur la base de données passées. Les résultats sont quelque peu décevants pour la loi GH-skew student, puisque la performance de ce modèle est comparable à celle d'un modèle GARCH asymétrique standard
Document Type: Thèse de doctorat
Issue Date: 2008
Open Access Date: 13 April 2018
Permalink: http://hdl.handle.net/20.500.11794/20020
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
25422.pdf27.96 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.