Singularity-free workspace analysis and geometric optimization of parallel mechanisms

Authors: Jiang, Qimi
Advisor: Gosselin, Clément
Abstract: Les mécanismes parallèles sont fréquemment utilisés comme robots manipulateurs, comme simulateurs de mouvement, comme machines parallèles, etc. Cependant, à cause des chaînes cinématiques fermées qui caractérisent leur architecture, le mouvement de leur plateforme est limité et des singularités cinématiques complexes peuvent apparaître à l'intérieur de leur espace de travail. Par conséquent, une maximisation l'espace de travail libre de singularité pour ce type de mécanismes est souhaitable dans un contexte de conception. Dans cette thèse, deux types de mécanismes parallèles sont étudiés: les mécanismes parallèles plans ?avec, en particulier le 3-RPR? et les mécanismes spatiaux ?avec, en particulier, la plateforme de Gough-Stewart. Pour chaque type de mécanisme parallèle, une forme simple d'équation de singularité est obtenue. Le principe consiste à séparer l'origine O' du repère mobile du point considéré P et de faire coïncider O' avec un point particulier de la plateforme. L'équation ainsi obtenue est l'équation de singularité du point P de la plateforme qui contient un ensemble minimal de paramètres géométriques. Par ailleurs, il est prouvé que les centres des cercles et sphères définissant l'espace de travail se trouvent exactement sur les lieux de singularité. Cette observation et l'équation de singularité simplifiée constituent les points de départ de l'analyse de l'espace de travail libre de singularité ainsi que de l'optimisation géométrique. Pour le mécanisme parallèle plan 3-RPR, l'espace de travail libre de singularité et les limites correspondantes pour la longueur des pattes dans une orientation prescrite sont déterminés. Ensuite l'architecture optimale qui permet d'obtenir un espace de travail maximal tout en étant libre de singularité est discutée. En ce qui concerne la plateforme de Gough-Stewart, cette thèse se concentre sur le manipulateur symétrique simplifié minimal (MSSM). Comme une plateforme de Gough- Stewart a 6 degrés de liberté, son espace de travail se divise en deux: l'espace de travail en position (ou simplement espace de travail) et l'espace de travail en orientation. A partir de l'équation de singularité simplifiée, une procédure générale est développée afin de déterminer l'espace de travail libre de singularité maximal autour d'un point particulier dans une orientation donnée, et afin de déterminer les limites correspondantes des longueurs de patte. Dans le but de maximiser l'espace de travail libre de singularité en orientation, un algorithme est présenté qui optimise les trois angles d'orientation. Sachant qu'une plateforme fonctionne habituellement pour une certaine gamme d'orientations, deux algorithmes qui calculent l'espace de travail en orientation libre de singularité maximal sont présentés. En utilisant les angles d'Euler en roulis, tangage et lacet, l'espace de travail en orientation pour une position prescrite peut être défini par 12 surfaces. Basé sur ce fait, un algorithme numérique est présenté qui évalue et représente l'espace de travail en orientation pour une position prescrite dans les limites données de longueur de patte. Ensuite, une procédure est proposée afin de déterminer l'espace de travail en orientation libre singularité maximal ainsi que les limites correspondantes des longueurs de patte. En pratique, une plateforme peut fonctionner dans un ensemble de positions. Ainsi, l'effet de la position de travail sur l'espace de travail en orientation libre de singularité maximal est analysé et deux algorithmes sont proposés pour calculer ce dernier pour tout un ensemble de positions particulières. Finalement, un algorithme qui optimise les paramètres géométriques est développé dans le but de déterminer l'architecture optimale qui permet à la plateforme de MSSM Gough-Stewart d'obtenir l'espace de travail libre singularité maximal autour d'une position particulière pour l'orientation de référence. Les résultats obtenus peuvent être utilisés pour la conception géométrique, la configuration des paramètres (longueur des pattes) ou la planification de trajectoires libres de singularité des mécanismes parallèles considérés. En outre, les algorithmes proposés peuvent également être appliqués à d'autres types de mécanismes parallèles.
Document Type: Thèse de doctorat
Issue Date: 2008
Open Access Date: 13 April 2018
Permalink: http://hdl.handle.net/20.500.11794/19997
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
25421.pdf63.03 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.