Incessant transitions between active and silent states in cortico-thalamic circuits and altered neuronal excitability lead to epilepsy

Authors: Nita, Dragos Alexandru
Advisor: Timofeev, Igor
Abstract: The guiding line in our experiments was the hypothesis that the occurrence and / or the persistence of long-lasting fluctuations between silent and active states in the neocortical networks, together with a modified neuronal excitability are the key factors of epileptogenesis, leading to behavioral seizures. We addressed this hypothesis in two different experimental models. The chronic cortical deafferentation replicated the physiological deafferentation of the neocortex observed during slow-wave sleep (SWS). Under these conditions of decreased synaptic input and increased incidence of silent periods in the corticothalamic system the process of homeostatic plasticity up-regulated cortical cellular and network mechanisms and leaded to an increased excitability. Therefore, the deafferented cortex was able to oscillate between active and silent epochs for long periods of time and, furthermore, to develop highly synchronized activities, ranging from cellular hyperexcitability to focal epileptogenesis and generalized seizures. The kindling model was used in order to impose to the cortical network a synaptic drive superior to the one naturally occurring during the active states - wake or rapid eye movements (REM) sleep. Under these conditions a different plasticity mechanism occurring in the thalamo-cortical system imposed long-lasting oscillatory pattern between active and silent epochs, which we called outlasting activities. Independently of the mechanism of epileptogenesis seizures showed some analogous characteristics: alteration of the neuronal firing pattern with increased bursts probability, a constant tendency toward generalization, faster propagation and increased synchrony over the time, and modulation by the state of vigilance (overt during SWS and completely abolished during REM sleep). Silent, hyperpolarized, states of cortical neurons favor the induction of burst firing in response to depolarizing inputs, and the postsynaptic influence of a burst is much stronger as compared to a single spike. Furthermore, we brought evidences that a particular type of neocortical neurons - fast rhythmic bursting (FRB) class - is capable to consistently respond with bursts during the hyperpolarized phase of the slow oscillation, fact that may play a very important role in both normal brain processing and in epileptogenesis. Finally, we reported a third plastic mechanism in the cortical network following seizures - a decreasing amplitude of cortically evoked excitatory post-synaptic potentials (EPSP) following seizures - which may be one of the factors responsible for the behavioral deficits observed in patients with epilepsy. We conclude that incessant transitions between active and silent states in cortico-thalamic circuits induced either by disfacilitation (sleep), cortical deafferentation (4-Hz ictal episodes) and by kindling (outlasting activities) create favorable circumstances for epileptogenesis. The increase in burst-firing, which further induce abnormally strong postsynaptic excitation, shifts the balance of excitation and inhibition toward overexcitation leading to the onset of seizures.
Document Type: Thèse de doctorat
Issue Date: 2008
Open Access Date: 13 April 2018
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
25160.pdf9.74 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.