Caractérisation de Bax Inhibitor-I et de son rôle dans la mort cellulaire programmée chez les végétaux

Authors: Bolduc, Nathalie
Advisor: Brisson, Louise
Abstract: Programmed cell death (PCD) is a physiological or pathological process allowing the selective elimination of useless, damaged or infected cells with the aim of maintaining the integrity or fitness of the remaining organism or cell population. In plants, molecular mechanisms regulating PCD are not yet elucidated, but the identification of functional plant orthologs of the human anti-PCD protein Bax Inhibitor-1 (BI-1), given that the pro-PCD protein Bax is absent in the plant kingdom, revealed the potential of BI-1 as an evolutionary conserved cell death regulator. Accordingly, this thesis describes the characterization of BI-1 orthologs isolated from Brassica napus (BnBI-1) and Nicotiana tabacum (NtBI-1). While combining bioinformatics analysis and localization studies using a fusion between BnBI-1 and the green fluorescent protein, we determined that BI-1 is an integral membrane protein provided with seven putative transmembrane domains localized at the endoplasmic reticulum. We also proceeded to functional assays in human HEK 293 cells, and we demonstrated that plant BI-1 orthologs can inhibit Bax-induced PCD (apoptosis) in these mammalian cells. On the other hand, we demonstrated that tobacco cell lines expressing lower levels of the NtBI-1 protein via an antisens mRNA induced an early PCD program under carbon starvation. We also discovered the up-regulation of NtBI-1 when cultured cells were grown in the presence of cytokinins (CKs), which correlated with the establishment of a stress response. The phenomenon involved post-transcriptional regulatory mechanisms of the BI-1 protein accumulation. Cellular response to CKs also involved a rapid influx of Ca2+ from the apoplast to the cytosol and this influx is partly involved in PCD induction but not in signaling leading to BI-1 modulation. Taken together, our data indicate that BI-1 is a negative regulator of plant PCD that would act in an evolutionary conserved death pathway. NtBI-1 protein over-accumulation in the stress response to CKs could contribute to cell survival and suggests the involvement of the protein in the senescence-delay activities of CKs. BI-1 is part of a pathway where its expression level influence cellular ability to resist to carbon starvation- or senescence-induced stresses, potentially via modulation of intracellular Ca2+ homeostasis.
Document Type: Thèse de doctorat
Issue Date: 2005
Open Access Date: 12 April 2018
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
22476.pdfTexte4.41 MBAdobe PDFThumbnail
All documents in CorpusUL are protected by Copyright Act of Canada.