Comportement anticipatoire de navigation durant la locomotion chez l'humain

Authors: Gérin-Lajoie, Martin
Advisor: McFadyen, Bradford JamesRichards, Carol L.
Abstract: A biomechanical approach was used to analyze the natural locomotor behavior employed to circumvent stationary and mobile obstacles under different environmental factors including the initial uncertainty related to the obstacle movement, auditory distractions, the ambient lighting and the type of environment (physical/virtual). Young and older adults as well as elite athletes were tested in order to better understand adaptive walking behavior in relation with the environment in populations with different locomotor capacities. A novel method, based on the measure of human movement, was developed to quantify personal space (PS) for the first time during locomotion. Results showed that young adults systematically maintain an elliptical PS during obstacle circumvention at different walking speeds as well as a reduced PS, generally on the dominant side. The size of PS, however, was adjusted according to different environmental factors. For instance, attending to an auditory message during circumvention requires the enlargement of PS in young adults, and to an even greater extent in older adults. In addition to decreasing their gait speed, older adults further enlarged their PS in order to “free up” attentional resources for the parallel processing of auditory messages. These results suggest that PS is calculated online and used to control navigation during walking. In addition, results suggest that trained athletes are able to process visuo-spatial information more rapidly than non-athletes since both groups took similar navigational decisions, but athletes navigated through new and complex obstacle courses faster even though both groups had access to the same unobstructed maximal speeds. The temporal scores of athletes were more affected by the reduction of ambient lighting, suggesting an anticipation strategy using information about distant obstacles when it is available. Such innovative protocols together with the developed measures (e.g. PS and navigation efficiency) have important implications for the evaluation and retraining of locomotor capacity within complex, ecological environments in various populations. Since the PS behavior was shown to be robust in the virtual environment used for this project, the virtual reality technology is proposed as a promising platform for the development of such applications.
Document Type: Thèse de doctorat
Issue Date: 2007
Open Access Date: 12 April 2018
Permalink: http://hdl.handle.net/20.500.11794/18873
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
24011.pdf4.96 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.