Réutilisation d'entités nommées pour la réponse au courriel

Auteur(s): Danet, Laurent
Direction de recherche: Lamontagne, Luc D.
Résumé: La réponse automatique aux courriels est une solution envisagée pour faciliter le travail de certains services d’entreprises, tels que les services à la clientèle ou les relations avec des investisseurs, services confrontés à un grand nombre de courriels souvent répétitifs. Nous avons décidé d’adapter une approche de raisonnement à base de cas (CBR - Case-Based Reasoning) pour confronter ce problème. Cette approche vise à réutiliser des messages antérieurs pour répondre à de nouveaux courriels, en sélectionnant une réponse adéquate parmi les messages archivés et en l’adaptant pour la rendre pertinent par rapport au contexte de la nouvelle requête. L’objectif de nos travaux est de définir une démarche pour aider l’usager d’un système de réponse au courriel à réutiliser les entités nommées de courriels antécédents. Cependant, les entités nommées nécessitent une adaptation avant d’être réutilisées. Pour ce faire, nous effectuons deux tâches qui sont d’abord l’identification des portions modifiables du message antécédent et ensuite la sélection des portions qui seront adaptées pour construire la réponse à la requête. Les deux tâches nécessitent l’utilisation de connaissances. Notre problématique consiste à déterminer si les approches adaptatives, basées sur des techniques d’apprentissage automatique permettent d’acquérir des connaissances pour réutiliser efficacement des entités nommées. La première tâche d’identification des portions modifiables s’apparente à l’extraction d’information. Toutefois nous nous intéressons uniquement aux entités nommées et à leurs spécialisations. La seconde tâche, la sélection de portions à adapter, correspond à une catégorisation de textes dans laquelle nous utilisons la requête pour attribuer une classe à la réponse que nous devons construire. La classe nous indique quelles entités doivent être adaptées. ii Nous avons étudiés et comparées différentes approches pour les deux tâches. Ainsi, nous avons testés pour l’extraction, les approches manuelle et automatiques, de haut en bas (top-down) et de bas vers le haut (bottom-up) sur un corpus de courriels. Les résultats obtenus par l’approche manuelle sont excellents. Toutefois nous observons une dégradation pour les approches automatiques. Pour la catégorisation, Nous avons évalué différentes représentations des textes et des mots, l’utilisation de poids pour ces derniers, et l’impact d’une compression obtenue par l’utilisation de règles d’association. Les résultats obtenus sont généralement satisfaisants et nous indique que notre approche, composée des deux tâches décrites précédemment, pourrait s’appliquer à notre problème de réponse automatique aux courriels.
Type de document: Mémoire de maîtrise
Date de publication: 2006
Date de la mise en libre accès: 12 avril 2018
Lien permanent: http://hdl.handle.net/20.500.11794/18858
Université décernant le diplôme: Université Laval
Collection :Thèses et mémoires

Fichier(s) :
Description TailleFormat 
23631.pdfTexte645.43 kBAdobe PDFMiniature
Télécharger
Tous les documents dans CorpusUL sont protégés par la Loi sur le droit d'auteur du Canada.