Impact de l'incertitude sur la gestion de l'environnement et des ressources naturelles : une analyse en temps continu par la programmation dynamique et les options réelles

Authors: Kanouni Hassani, Rams
Advisor: Saphores, Jean-Daniel
Abstract: Using tools from mathematical finance and economic theory, this thesis studies the impact of uncertainty and irreversibility on decision-making related to the management of pollution, energy production, and the extraction of a non-renewable resource. It consists of three essays. The first essay analyzes the decision to invest to reduce the emissions of a stock pollutant under two types of uncertainty: economic (emissions are stochastic because of changes in economic activity) and environmental (which affects directly the stock of pollutant). A number of recent papers find that the decision to invest to reduce the emissions of a stock pollutant should be delayed in the presence of sunk costs and uncertainty. Using concepts from the theory of Real Options, we formulate a social planning problem in continuous time, derive the corresponding optimal stopping rule, and show that when economic or environmental uncertainty is large enough, it is optimal to invest immediately to reduce emissions. These results have implications for the management of stock pollutants and particularly for global warming. The second essay is concerned with the valuation of energy generating assets in a deregulated electricity market. The recent wave of deregulation initiatives in the electricity industry has created the need to value energy-generating assets in an uncertain environment in order to facilitate their sale. However, a number of authors have noted discrepancies between valuations predicted by a conventional cost-benefit approach and observed transactions. In this chapter, I analyze the importance of explicitly accounting for technological constraints in the generation process by modeling the decision to start and stop the production of electricity by a gas-powered plant. With the inclusion of these constraints, the generator may be in two different states, idle or generating electricity. In either state its operator has a call option to switch to the other state. These options depend on the spark spread (the difference between the price of electricity and the price of the fuel used to generate it, adjusted for equivalent units), which is assumed to follow a mean reverting process with regime changes. I use data from the California deregulated market to estimate the thresholds for starting and stopping production. These results are entered in a simple simulation framework to estimate the value of the electricity-generating asset in a competitive market. I find significant differences between a standard cost-benefit analysis and this Real Options approach. In my third essay, I derive a testable form of the price dynamics of a non-renewable natural resource in the context of a general equilibrium portfolio choice model where the representative agent has a non-expected utility function. The non-renewable nature of the resource introduces an element of irreversibility in the portfolio choice. An analog of Hotelling's rule is derived. In an expected utility framework, the difference between the rate of return of the risky asset (the non-renewable resource) and that of the riskless one equals a risk premium that depends only on the coefficient of relative risk aversion and the covariance between consumption and the return of the risky asset. I show that with this more general specification of the utility function, the risk premium depends also on the instantaneous elasticity of substitution (IES, which is not necessarily equal to the inverse of the coefficient of relative risk aversion), the uncertainty of the indirect utility function and the uncertainty of the marginal utility of wealth. These results have important consequences. If the IES is large enough and if the uncertainty of the indirect utility function is small enough, a risk-averse consumer may be willing to pay a premium to hold the risky asset even though the covariance between its return and consumption is positive. This case is of course excluded in the expected utility framework.
Document Type: Thèse de doctorat
Issue Date: 2006
Open Access Date: 12 April 2018
Permalink: http://hdl.handle.net/20.500.11794/18709
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
23775.pdf728.36 kBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.