La géosimulation orientée agent : un support pour la planification dans le monde réel

Auteur(s): Sahli, Nabil
Direction de recherche: Moulin, Bernard
Résumé: La planification devient complexe quand il s’agit de gérer des situations incertaines. Prédire de façon précise est une tâche fastidieuse pour les planificateurs humains. L’approche Simulation-Based Planning consiste à associer la planification à la simulation. Chaque plan généré est simulé afin d’être testé et évalué. Le plan le plus approprié est alors retenu. Cependant, le problème est encore plus complexe lorsque viennent s’ajouter des contraintes spatiales. Par exemple, lors d’un feu de forêt, des bulldozers doivent construire une ligne d’arrêt pour arrêter la propagation des feux. Ils doivent alors tenir compte non seulement de l’avancée des feux mais aussi des caractéristiques du terrain afin de pouvoir avancer plus facilement. Nous proposons une approche de géosimulation basée sur les agents et qui a pour but d’assister la planification dans un espace réel, à large échelle géographique et surtout à forte composante spatiale. Un feu de forêt est un problème typique nécessitant une planification dans un monde réel incertain et soumis à de fortes contraintes spatiales. Nous illustrons donc notre approche (nommée ENCASMA) sur le problème des feux de forêts. L’approche consiste à établir un parallélisme entre l’Environnement Réel ER (p.ex. une forêt incendiée) et un Environnement de Simulation ES (p.ex. une reproduction virtuelle de la forêt incendiée). Pour garantir un niveau acceptable de réalisme, les données spatiales utilisées dans l’ES doivent absolument provenir d’un SIG (Système d’information Géographique). Les planificateurs réels comme les pompiers ou les bulldozers sont simulés par des agents logiciels qui raisonnent sur l’espace modélisé par l’ES. Pour une meilleure sensibilité spatiale (pour tenir compte de toutes les contraintes du terrain), les agents logiciels sont dotés de capacités avancées telles que la perception. En utilisant une approche par géosimulation multiagent, nous pouvons générer une simulation réaliste du plan à exécuter. Les décideurs humains peuvent visualiser les conséquences probables de l’exécution de ce plan. Ils peuvent ainsi évaluer le plan et éventuellement l’ajuster avant son exécution effective (sur le terrain). Quand le plan est en cours d’exécution, et afin de garantir la cohérence des données entre l’ER et l’ES, nous gardons trace sur l’ES des positions (sur l’ER) des planificateurs réels (en utilisant les technologies du positionnement géoréférencé). Nous relançons la planification du reste du plan à partir de la position courante de planificateur réel, et ce de façon périodique. Ceci est fait dans le but d’anticiper tout problème qui pourrait survenir à cause de l’aspect dynamique de l’ER. Nous améliorons ainsi le processus classique de l’approche DCP (Distributed Continual Planning). Enfin, les agents de l’ES doivent replanifier aussitôt qu’un événement imprévu est rapporté. Étant donné que les plans générés dans le cas étudié (feux de forêts) sont essentiellement des chemins, nous proposons également une approche basée sur la géosimulation orientée agent pour résoudre des problèmes particuliers de Pathfinding (recherche de chemin). De plus, notre approche souligne les avantages qu’apporte la géosimulation orientée agent à la collaboration entre agents humains et agents logiciels. Plus précisément, elle démontre : • Comment la cognition spatiale des agents logiciels sensibles à l’espace peut être complémentaire avec la cognition spatiale des planificateurs humains. • Comment la géosimulation orientée agent peut complémenter les capacités humaines de planification lors de la résolution de problèmes complexes. Finalement, pour appliquer notre approche au cas des feux de forêts, nous avons utilisé MAGS comme plate-forme de géosimulation et Prometheus comme simulateur du feu. Les principales contributions de cette thèse sont : 1. Une architecture (ENCASMA) originale pour la conception et l’implémentation d’applications (typiquement des applications de lutte contre les désastres naturels) dans un espace géographique réel à grande échelle et dynamique. 2. Une approche basée sur les agents logiciels pour des problèmes de Pathfinding (recherche de chemin) particuliers (dans un environnement réel et à forte composante spatiale, soumis à des contraintes qualitatives). 3. Une amélioration de l’approche de planification DCP (plus particulièrement le processus de continuité) afin de remédier à certaines limites de la DCP classique. 4. Une solution pratique pour un problème réel et complexe : la lutte contre les feux de forêts. Cette nouvelle solution permet aux experts du domaine de mieux planifier d’avance les actions de lutte et aussi de surveiller l’exécution du plan en temps réel.
Type de document: Thèse de doctorat
Date de publication: 2006
Date de la mise en libre accès: 11 avril 2018
Lien permanent: http://hdl.handle.net/20.500.11794/18242
Université décernant le diplôme: Université Laval
Collection :Thèses et mémoires

Fichier(s) :
Description TailleFormat 
23373.pdfTexte2.98 MBAdobe PDFMiniature
Télécharger
Tous les documents dans CorpusUL sont protégés par la Loi sur le droit d'auteur du Canada.