Amélioration de la stabilité dimensionnelle des panneaux de fibre de bois MDF par traitements physico-chimiques

Authors: Garcia, Rosilei Aparecida
Advisor: Cloutier, AlainRiedl, Bernard
Abstract: The objectives of this study were 1) to improve the dimensional stability of medium density fiberboards (MDF) by three physical or chemical treatments: a) esterification, b) maleated polypropylene wax and c) heat treatment; 2) to determine the effect of these treatments on the mechanical properties, vertical density profiles and wetting properties of the panels and 3) to determine the chemical modification following treatments. MDF panels were produced from fibers esterified with 5 % maleic anhydride. The esterification treatment showed a reduction in thickness swelling and water absorption after 2 hours water soaking independently of reaction time. However, the treatment did not improve the physical properties after 24 hours water soaking or after relative humidity repeated cycles. The receding contact angle increased while wicking decreased following esterification. MDF panels were produced from two resin types (urea-formaldehyde and melamine-urea-formaldehyde) and three maleated polypropylene contents (0, 3 and 5 %). Photomicrographs showed that maleated polypropylene forms agregates within the panels. The treatment showed an important reduction of thickness swelling and water absorption after water soaking. Linear expansion and contraction increased following treatment. Thickness swelling and shrinkage in adsorption and desorption conditions decreased following treatment. The treatment improved the mechanical properties. Advancing contact angles increased for panels treated and bonded with urea-formaldehyde. Receding contact angle increased with 5 % maleated polypropylene content while wicking decreased following the treatment independently of maleated polypropylene content. Infrared spectroscopy did not detect chemical reaction between the fibers and the maleated polypropylene. MDF panels were produced from untreated fibers and heat-treated fibers at 150 and 180oC for 15, 30 and 60 minutes. Heat treatment showed a reduction on thickness swelling and water absorption after water soaking. Thickness swelling increased after relative humidity repeated cycles. Linear expansion and contraction and springback were not improved by the treatment. The treatment showed no significant effect in the mechanical properties and vertical density profile of the panels. The advancing and receding contact angles increased while wicking decreased by the treatment. X-ray photoelectron spectroscopy showed slight decreases in O/C ratio and changes in C1/C2 ratio for heat-treated fibers.
Document Type: Thèse de doctorat
Issue Date: 2005
Open Access Date: 11 April 2018
Permalink: http://hdl.handle.net/20.500.11794/18228
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
23177.pdf3.06 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.