Transduction de protéines dans le développement d'un traitement pour la dystrophie musculaire de Duchenne

Authors: Caron, Nicolas
Advisor: Tremblay, Jacques-P.
Abstract: Duchenne muscular dystrophy (DMD) is caused by the absence of dystrophin and leads to progressive weakness in heart and skeletal muscles. Affected boys can only hope to live for 20 years since there is still no effective therapy for DMD. Autologous transplantation of genetically modified myoblasts can restore dystrophin expression, but the rapid death, the specific immune response and limited cellular migration severely limit the efficiency of the treatment. Immortalization, although a risky procedure, is necessary to proliferate myoblasts isolated from dystrophic patients, since by age five; their myogenic cells are practically senescent. Proteins and cargos fused to the Tat protein (HIV) can be internalized in cells and living tissue. The mechanism of Tat internalization is still misunderstood and controversial. Our objectives were to test the susceptibility of muscle fibers to be transduced by Tat fusion proteins, to better understand the mechanism of entry of Tat fusions, to optimize intracellular delivery and to develop techniques allowing the immortalization reversal of myoblasts using Tat-fusion proteins. The low susceptibility of muscle fibers to be transduced and the strong interaction between Tat-fusion proteins and the extracellular matrix surrounding muscle fibers resulted in poor protein delivery. Our work shows that the nuclear localization signal comprised in Tat is not sufficient to confer nuclear delivery to eGFP. The punctuate intracellular distribution, the internalization kinetics, the inhibitory effect of low temperatures and the functional increase exerted by lysosomotropic agents are coherent with a classical endocytosis internalisation mechanism. Our data suggests that Tat-fusion proteins proceed through the endosomal pathway, avoid lysosomes and are then sequestered in the periphery of the nucleus. Hence, improper intracellular trafficking is the main factor limiting the efficiency of Tat-mediated protein internalization. With a better understanding of this internalization mechanism, we were able to optimize the delivery of a Tat-Cre fusion protein to mediate the complete and efficient removal of an oncogene necessary for the proliferation of myoblasts isolated from DMD patients. Therefore this technique should help in the design of a successful treatment based on the autologous transplantation genetically-modified cells.
Document Type: Thèse de doctorat
Issue Date: 2004
Open Access Date: 11 April 2018
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
21775.pdf4.86 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.