Effects of cocaine on c-fos and NGFI-B mRNA expression in transgenic mice underexpressing glucocorticoid receptors

Authors: St-Hilaire, MichelTremblay, Pierre-OlivierLévesque, DanielBarden, NicholasRouillard, Claude
Abstract: Numerous evidences suggest that stress and stress-related hormones can modulate the activity of the brain reward pathway and thus may account for individual vulnerability towards the reinforcing effects of drugs of abuse. Transgenic (TG) mice expressing an antisense mRNA against the glucocorticoid receptor (GR), which partially blocks GR expression, were used to assess the role of GR dysfunction on cocaine (COC)-induced c-fos and Nerve-Growth Factor Inducible-B (NGFI-B, or Nur77) gene expression. These two genes belong to different families of transcription factors and have been shown to be modulated by various dopaminergic drugs. TG and wild-type (WT) mice were both acutely and repeatedly treated with COC (20 mg/kg, i.p.). In the chronic experiment, mice received a 5-day treatment of COC and were challenged 5 days later with COC or vehicle. Locomotor activity was assessed during the entire chronic experiment in the mouse home cages. Animals were sacrificed 1 h after the last injection and NGFI-B and c-fos mRNA levels in the prefrontal cortex, the nucleus accumbens and the striatum were measured by in situ hybridization. Acute COC administration led to significantly smaller c-fos increases in TG mice compared to WT, whereas repeated COC treatment potentiated c-fos induction both in TG and WT mice to equivalent levels. TG mice displayed higher basal NGFI-B expression in the nucleus accumbens and the level of NGFI-B mRNA was differently modulated by COC in TG mice compared to WT mice. In accordance with data on c-fos expression, behavioral data indicate a blunted locomotor effect on the first COC injection in TG mice, a phenomenon corrected by the repeated COC treatment. These results suggest that an alteration of the hypothalamus-pituitary-adrenal axis can modify COC-induced regulation of the transcription factors c-fos and NGFI-B, and that these changes parallel those seen at the behavioral level. It also demonstrates that the differences at the behavioral and molecular levels noted between TG and WT mice after acute COC injection disappear following repeated COC administration, suggesting that repeated COC has a greater impact in TG mice underexpressing GRs.
Document Type: Article de recherche
Issue Date: 10 March 2003
Open Access Date: Restricted access
Document version: VoR
Permalink: http://hdl.handle.net/20.500.11794/17005
This document was published in: Neuropsychopharmacology, Vol. 28 (3), 478-489 (2002)
American College of Neuropsychopharmacology
Alternative version: 10.1038/sj.npp.1300067
Collection:Articles publiés dans des revues avec comité de lecture

Files in this item:
314.54 kBAdobe PDF    Request a copy
All documents in CorpusUL are protected by Copyright Act of Canada.