Evaluating the quality of OSM roads and buildings in the Québec Province

Mémoire

Milad Moradi

Maîtrise en sciences géomatiques - avec mémoire
Maître ès sciences (M. Sc.)

Québec, Canada

© Milad Moradi, 2020
Evaluating the Quality of OSM Roads and Buildings in the Québec Province

Mémoire

Milad Moradi

Sous la direction de :

Stéphane Roche, directeur de recherche
Mir Abolfazl Mostafavi, codirecteur de recherche
Résumé

Ces dernières années, de nouvelles méthodes de collecte de données géospatiales basées sur la contribution du public se sont développées. L’information géographique volontaire ou « Volunteered Geographic Information (VGI) » en anglais, renvoie à des contextes dans lesquels les citoyens génèrent volontairement du contenu géospacial et le partage avec le reste de la communauté. OpenStreetMap est l’un des projets VGI les plus réussis. Il vise à créer une carte du monde modifiable et gratuite. Les citoyens peuvent participer à ce projet en créant de nouvelles fonctionnalités, en modifiant celles existantes ou en ajoutant des valeurs d’attribut aux objets cartographiés. Les valeurs d'attribut sont stockées dans la base de données OSM sous forme de paires «clé = valeur». Il existe trois façons de participer à OSM: numériser des images aériennes, importer des coordonnées GPS ou importer un ensemble de données. Aucune expertise en géomatique ou SIG n’est requise pour participer au projet. De plus, il n’y a pas de règle prédéfinie pour le balisage et les participants OSM peuvent ajouter n’importe quelle clé ou valeur aux fonctionnalités. Par conséquent, il existe de réelles préoccupations concernant la qualité des données OSM. Cette recherche évalue la qualité de la base de données OSM sur la base des éléments de qualité mentionnés dans la norme ISO (ISO 19157: 2013). En raison de l'accès limité aux ensembles de données de référence, seules l'exhaustivité, la précision de la position, la précision des attributs et la précision de la forme géométrique sont évaluées dans cette recherche. Dans un premier temps, toutes les mesures proposées pour évaluer la qualité des données spatiales sont passées en revue. Ensuite, la qualité des bases de données des routes et des bâtiments OSM est évaluée à l’aide de ces mesures. Enfin, une analyse statistique est effectuée pour mesurer la corrélation entre les mesures de qualité et les indicateurs de qualité potentiels tels que la densité de la population, le niveau de revenu et la distance au centre de la ville. Ces indicateurs peuvent fournir un aperçu de la qualité des données OSM lorsqu’aucune donnée de référence n’est disponible.
Abstract

In the recent years, a new method of spatial data collection based on the public participation has emerged which is called Volunteered Geographic Information (VGI). In VGI projects, citizens voluntarily generate spatial content and share it with the rest of the community. OpenStreetMap is one of the most successful VGI projects that aims to create an editable, free map of the world. Citizens can participate in this project by creating new features, editing the existing ones or adding attribute values to the features. Attribute values are stored in OSM database as “key=value” pairs. There are three ways of participating in OSM: digitizing aerial images, importing GPS coordinates and importing a data set. No expertise in geomatics or GIS is required for participating in the project. Furthermore, there is no pre-defined rule for tagging and OSM participants can add any key or value to the features. Consequently, there are real concerns regarding the quality of OSM data. This research proposes to assess the quality of OSM database based on the quality elements that are mentioned in ISO standard (ISO 19157:2013). Due to the limited access to reference data sets, only completeness, positional accuracy, attribute accuracy and shape accuracy are evaluated in this research. In the first step, all the measures that are proposed for assessing the quality of spatial data are reviewed. Then, the quality of OSM roads and buildings databases are assessed using these measures. Finally, the statistical analysis is done to measure the correlation between quality measures and potential quality indicators such as population density, income level and the distance to the center of the city. These indicators can provide an insight into the quality of OSM data where no reference data is available.
Table des matières

Résumé ... ii
Abstract... iii
Table des matières .. iv
Liste des Figures .. vii
Liste des Tableaux ... ix
Liste des abréviations, sigles, acronymes ... x
Remerciements .. xi
Introduction ... 1
Research Questions ... 2
Research Objectives .. 3
Steps of the research ... 4
Chapter 1 Literature Review ... 7
 Volunteered geographic information ... 7
 VGI and related concepts ... 8
 Different types of VGI ... 9
 VGI Applications .. 10
Spatial Data Quality .. 10
 VGI quality ... 13
OpenStreetMap ... 15
 OSM Data Structure .. 16
 Motivation of Contributors ... 18
 Tools to Edit or Work with OSM Data ... 19
 OSM Data License ... 20
 Humanitarian OSM ... 20
OSM data quality ... 20
 The Quality of OSM Roads .. 23
 The Quality of OSM Buildings .. 25
Chapter 2 Evaluating the Quality of OSM Roads ... 29
 Introduction .. 29
 OpenStreetMap Quality Assessment .. 31
 Spatial Data Quality ... 31
Liste des Figures

Figure 1. the steps of the research ... 6
Figure 1-1. The flow of information in Web 2.0 ... 7
Figure 1-2. Overview of the components of the geographic data quality ([7]) 11
Figure 1-3. OpenStreetMap website .. 15
Figure 1-4. The number of OSM registered users over the time (Source: [47]) ... 16
Figure 1-5. Distribution of values for the key "highway" (Source [54]) 18
Figure 1-6. Market share of each OSM editor tool (Source: [13]) 19
Figure 2-1. average distance between the two lines (Source: [90]) 36
Figure 2-2. Hausdorff distance between two lines (inspired from: [90]) 37
Figure 2-3. The increasing buffer method (source: [64]) 38
Figure 2-4. Double buffer method (Source: [91]) 39
Figure 2-5. reference roads (left) and the OSM roads (right) [95] 41
Figure 2-6. The two data sets in the campus of Laval University [95] 42
Figure 2-7. The completeness of OSM road network. 1- Left: Old Québec 2- Right: outside urban areas 43
Figure 2-8. The completeness of OSM road network in the province of Québec [95], [97] 44
Figure 2-9. An example of increasing buffer method for the distance of 2 m ... 45
Figure 2-10. The positional accuracy of the OSM road network using increasing buffer method 46
Figure 2-11. The positional accuracy of each type of road 47
Figure 2-12. Positional accuracy of OSM roads calculated using IBM with 1m, 2m and 5m buffers 48
Figure 2-13. An example of double buffer method 49
Figure 2-14. Positional accuracy of the OSM roads calculated by double buffer method using 1m buffers 50
Figure 2-15. Value of Levenshtein distance for the whole province of Québec .. 52
Figure 2-16. The Levenshtein distance calculated for each grid.................. 53
Figure 2-17. Levenshtein distance for each grid around Québec city 54
Figure 3-1. The issues regarding matching OSM building footprints with reference ones 65
Figure 3-2. The errors of matching OSM building footprints with reference ones 66
Figure 3-3. Polygon aggregation for feature matching 68
Figure 3-4. Proposed feature matching algorithm 69
Figure 3-5. The study area .. 77
Figure 3-6. Cities that are selected as case studies 77
Figure 3-7. Distribution of OSM buildings in the province of Québec 80
Figure 3-8. Reference data and clipped OSM data in Québec City 81
Figure 3-9. Reference data and OSM data on the campus of Laval University ... 81
Figure 3-10. The 5 measures of quality for each grid in Québec City 86
Figure 3-11 OSM buildings in and in the reference database with their centroids .. 87
Figure 3-12. Average distance between the centroid of the OSM buildings and their corresponding reference building (m) .. 88
Figure 3-13. Scatter diagrams of the displacement of the centroids of OSM buildings 89
Figure 3-14. Average positional accuracy for each grid cell in Québec City .. 90
Figure 3-15. Area ratio between the OSM buildings and their corresponding reference building 91
Figure 3-16. The compactness values for each city 92
Figure 3-17. Average Hausdorff distance for each city (m) 93
Figure 3-18. Average value of the average distance for each city (m).............................. 94
Figure 3-19. Shape accuracy measures for the city of Longueuil.............................. 95
Figure 3-20. taginfo results for the tag "building=yes" (source: https://taginfo.openstreetmap.org/)............. 96
Figure 3-21. Calculating the correlation between the quality measures and potential indicators.............. 99
Liste des Tableaux

Table 2-1. The frequent errors that exist in the road names in the province of Québec 51
Table 2-2. Correlation coefficient between quality measures and potential quality indicators 55
Table 2-3. Result of Spearman’s correlation test between the quality measures and quality indicators 57
Table 3-1. Cities that are selected for the study area ... 76
Table 3-2. Links to the provider of the reference data for each city ... 78
Table 3-3. Unit-based completeness for the selected cities in the Québec Province 83
Table 3-4. Average area of the building footprints in OSM and in the reference databases 84
Table 3-5. The object-based completeness assessment for the cities of the province of Québec 85
Table 3-6. Spearman’s rank correlation between the quality measures and quality indicators 101
Table 3-7 Correlation between the size of the buildings’ footprints and quality measures 103
Table 3-8. Result of Spearman’s correlation test between the quality measures and quality indicators 104
<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>VGI</td>
<td>Volunteered Geographic Information</td>
</tr>
<tr>
<td>IBM</td>
<td>Increasing Buffer Method</td>
</tr>
<tr>
<td>DBM</td>
<td>Double Buffer Method</td>
</tr>
<tr>
<td>OSM</td>
<td>OpenStreetMap</td>
</tr>
<tr>
<td>NAD</td>
<td>North American Datum</td>
</tr>
<tr>
<td>ODbL</td>
<td>Open Database License</td>
</tr>
<tr>
<td>UGSC</td>
<td>User Generated Spatial Content</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
</tbody>
</table>
Remerciements

I want to thank everyone who helped me during this thesis, especially my supervisors and my family.
Introduction

In the last two decades, Web 2.0 has changed the way people were interacting with the internet [1]. Before Web 2.0, the information came from the internet servers towards the people, while Web 2.0 technologies enabled people to produce content and send it back to the server [1]. Therefore, Web 2.0 enabled internet users to share content among themselves. This new technology is the basic concept behind many famous websites such as Wikipedia, Tweeter, and Facebook [2]. In the realm of spatial and geographic applications, Web 2.0 enabled users to share their geographic data or share their spatial knowledge about features and places. On the other hand, easy access to GPS-enabled devices such as cell phones facilitated the production of geographic content [3]. Therefore, volunteers can produce geographic content and share it over the internet with other citizens [3].

Volunteered Geographic Information (VGI) is a term introduced by Goodchild to address this new phenomenon [3]. In a VGI project, citizens contribute voluntarily in producing geographic content and sharing it with the rest of the citizens. OSM is an example of VGI where volunteers contribute to the project by digitizing new features from aerial imagery or by editing the semantic attributes of the existing features [4]. Every contributor can add, edit or remove features from the map. OSM does not ask its contributors to have a certain level of knowledge about geographic data [5]. Any non-expert person can join the project. Therefore, there is a debate about the quality of OSM data. Even some cases of vandalism (introducing error to map intentionally) have been detected by researchers [6].

The quality of spatial data is very important. Practically, it is impossible to use a database properly for an application without having knowledge about its quality. It is the quality of the data that determines whether it is fit for a purpose or not. ISO standard (19157) [7] mentions six elements of quality: 1) completeness, 2) positional accuracy 3) semantic accuracy, 4) logical consistency, 5) temporal accuracy and 6) fitness for use. This standard defines a unique way of understanding the quality of spatial data. Several quality measures are proposed to measure these elements of quality. There are different measures (e.g. shape, area, et.) for evaluating the positional accuracy of polygonal, linear, and other types of features. This research first finds different measures of quality proposed by previous researchers. Then, it evaluates the quality of OSM data in the province of Québec using these measures.

Generally, these measures of quality are calculated by comparing the OSM data to a reference database. This method of quality assessment cannot be used in the regions where no reference data is available (does not exist or is expensive). Thus, researchers proposed other indicators of quality [8] without using these measures. Indicators can describe the quality where no other method of quality assessment is available. Population [8], income [9] density of OSM buildings [10] can be used as indicators that have been proposed by previous
researches. The correlation between indicators and measures of quality is calculated in this research to provide knowledge about each indicator and their relations with the elements of data quality.

Research Questions

OSM data is freely available for users and they just must mention the source of the data. In addition, it is not possible to use geographic data properly in any application without having complete information describing the quality of the geographic data. The data of OSM is available, but the quality of this data is not very well investigated so far. The first question of this research is:

- **How is the quality of OpenStreetMap road and building data in the province of Québec?**
 - How complete is the data?
 - How is the attribute accuracy of the data?
 - How is the positional accuracy of the data?
 - How is the shape accuracy of the data?

To answer this question, we must evaluate different measures of the quality of OSM data in the province of Québec. Quality is not a clear concept and in different applications, it may be defined in different ways. In terms of spatial data quality, a standard is published by ISO, and this research follows this standard to evaluate the quality of OSM data.

Different quality measures are proposed by researches to evaluate different aspects of quality. Thus, it is necessary to do a literature review and find the most efficient measures proposed by the previous researches. The second question of this research is:

- **Which measures of quality should be used to evaluate the quality of OSM roads and buildings?**

The main objective of OSM is to provide a free and open map of the world for the places where authoritative data is not available, or it is not free. The traditional methods of quality evaluation compare the test database to a reference database, but these methods are not suitable for OSM quality assessment in the places where no authoritative data is available. Thus, researchers tried to find indicators that can describe the OSM data quality in those places. This research tries to expand these indicators and assess their correlation with quality measures in order to determine which indicator has a relationship with each quality measure. These quality indicators are extracted from the previous researches. However, previous researches did not evaluate the relationship (positive
or negative correlation) between each indicator and all quality measures. Thus, the knowledge in this area is not complete. This research will fill the gaps of previous researches by doing a complete evaluation of the relationship between quality measures and quality indicators. For example, if a variable (such as population) is proved to have a positive association with a quality measure (such as completeness), this research investigates the following hypothesis: “This variable (quality indicator) has a positive correlation with other quality measures such as positional accuracy and attribute accuracy”. The variables that are proved to have a positive correlation with a quality measure, are called a quality indicator or a proxy for that measure. These quality indicators can potentially have a positive correlation with other measures of quality. Thus, the last question of this research tries to provide knowledge about the relationship between quality indicators and the quality measures that are not evaluated in the previous researches.

The third question of this research is:

- **What is the relationship (correlation value) between the potential quality indicators and quality measures?**

The answer to this question provides insight into the use of quality indicators and their role in the quality assessment of the OSM database.

Research Objectives

The quality assessment of OSM is an important challenge that provides knowledge about the fitness of OSM roads and buildings data for different applications. Spatial data quality is not a well-defined concept and there is a debate about it. In addition, VGI (and especially OSM) is very common these days and a wide range of people contribute to VGI projects such as OSM. The data produced by these people cannot be used properly, unless we have a good understanding of the quality of this new data source. Therefore, it is very important that researchers develop methods that can provide knowledge about the quality of OSM. Hence, the first objective of this research is:

- **Identifying measures proposed in the literature for evaluating the quality of OSM linear (roads) and polygonal (buildings) data.**

When the proposed methods are analyzed, the suitable ones will be selected to evaluate the quality of OSM roads and buildings data in the province of Québec. OSM project has a variety of active contributors in the province of Québec and it is important to evaluate the quality of this data in order to be able to use it in appropriate applications.
The second objective of this research is:

- **Evaluating the quality of OSM roads and buildings data in the province of Québec using the measures that are discussed in the previous step.**

Considering the fact that the traditional methods of quality assessment that compares the OSM data with the reference data are not suitable for the places where no authoritative data is available, this research analyses the correlation between a number of potential quality indicators (such as population, income, distance from the center of the city, …) and quality measures. These correlations will provide information about the potential quality indicators. I call them potential quality indicators, because even though previous researches proved a positive correlation between them and a specific quality measure, they may or may not have a positive correlation with other quality measures. The results of the correlation analysis will tell us which indicator can better describe each quality measure. Which indicator is stronger or which one of these potential indicators are not suitable (if the correlation is low).

The third objective of this research is:

- **Calculating the correlation between the quality measures and the potential quality indicators in order to find out which one of these potential indicators can be used for describing the quality.**

This step requires calculating the quality measures and quality indicators for each region of the case study. Then, calculating the correlation between these two groups of variables to understand the role of each of them in describing the quality.

Steps of the research

In this research, the first step is finding the previous researches that have been done about the quality assessment of OpenStreetMap data. The purpose of this literature review is to find out 1) which methods have been proposed for quality assessment and which quality measures are proposed to provide a quantitative evaluation of OSM data quality 2) which potential quality indicator is proposed by the previous researches. Therefore, the output of this step is two lists: 1) a list of measures of quality 2) a list of potential quality indicators.

In the next steps, the road data is downloaded from OSM and authoritative sources. The downloaded data is preprocessed to remove the road types that do not exist in the authoritative database (such as step ways). The preprocess step deletes the buildings that are smaller than 40 square meters because most probably they are garages and other small buildings that look like houses in aerial images. When the data from both sources is ready, feature matching algorithms are used to find corresponding features in order to enable comparison.
between them. In the case of buildings, the authors proposed a new feature matching algorithm that is based on the percentage of overlap and shape similarity of the two polygons.

Next, the measures of quality that are listed in the previous step are calculated for OSM roads and buildings database. Completeness, attribute accuracy, shape accuracy and positional accuracy are the elements of the quality that are evaluated in this research. In the next step, the value of the potential quality indicators is calculated. This research takes into account 7 quality indicators: population, income, the density of OSM buildings, the density of OSM roads, the number of POIs, the distance to the center of the city, and the size of the buildings. The size of the buildings cannot be used for roads but the rest of the quality indicators are measured for both roads and buildings.

Finally, the correlation between the quality measures and quality indicators is evaluated to find out the relationship among them. A high correlation shows that the quality measure can be described with the indicators, while a low correlation shows that it is impossible to describe the behavior of the quality measures with the help of quality indicators.

Because roads are linear features and buildings are polygonal features, the author decided to separate these two different processes in two chapters. Thus, the rest of this research consists of these chapters: 1) literature review 2) quality assessment of roads 3) quality assessment of buildings 4) conclusion.
Figure 1. The steps of the research

1. Literature Review
 - Finding all measures of quality
 - Finding potential quality indicators

2. Calculating the quality of OSM roads
 - Values of quality measures

3. Calculating the quality indicators
 - Knowledge about quality indicators

4. Calculating the correlation between quality measures and indicators

5. Calculating the quality of OSM buildings
 - Values of quality measures

6. Calculating the quality indicators

7. Calculating the correlation between quality measures and indicators

End

Figure 1. The steps of the research
Volunteered geographic information

In recent decades, citizens are not only the users of the data, but they are also the providers of it [11]. By the advent of Web 2.0, which is also known as the participatory Web, the users of the Internet became able to produce content and participate in the flow of information [2]. Websites based on Web 2.0 allow their users to participate in the community and build a virtual community in which each member can produce and share content with other members [2]. Examples of this participation include tagging, writing a comment, sharing a video, and sharing a document [2]. In other words, before Web 2.0, the flow of information was from providers to users, but after Web 2.0, users also can produce and share content [3]. Figure 1-1 illustrates the flow of information in Web 2.0. Popular websites such as Wikipedia, Facebook, and Youtube are examples of Web 2.0 [2].

Figure 1-1. The flow of information in Web 2.0

This new concept of Web 2.0 revolutionized the traditional geographic information collection methods and enabled a phenomenon that is called VGI by Goodchild [3]. Goodchild believes that VGI can be considered as a democratization of GIS because it provides free access to spatial data for all citizens [12]. He argued that by the advent of Web 2.0, the flow of information between the user and server became a two-way road [3]. From the point of view of Goodchild, two main factors facilitated the growth of VGI over the recent years: 1) the facilitation to share geographic data, 2) the facilitation to collect geographic data [3]. The facilitation in sharing the geographic data happened by Web 2.0, while the facilitation to collect the geographic data happened due to the GPS devices and cameras [3]. Therefore, today citizens are able to use their cellphone to collect geographic
data and then use Web 2.0 to share it with others. The cellphones also enable users to collect photos, and thanks to the GPS devices, these photos can be tagged with geographic coordinates [3]. These geo-tagged photos are a source of geographic data that can be shared easily using Web 2.0 technologies. Overall, the new technologies allow human beings to act as sensors and collect geographic data in different forms and share it with others, a phenomena that Goodchild referred to it as “citizens as sensors” [3].

Therefore, in the domain of VGI, there are different concepts, such as citizen science, user-generated content, and public participatory GIS. These concepts will be discussed in detail in the next section.

VGI and related concepts

Citizen science
As discussed earlier, Goodchild introduced the concept of VGI, and explained that in recent years, thanks to the technological advances, humans can act as sensors and collect and share geographic information with other members of the community [3]. The term citizen science is then used to describe the act of any group of citizens who work as observers and collect data to solve any specific problem in the world [3]. Therefore, VGI can be related to citizen science because in VGI, citizens are observers, and they detect a specific phenomenon, and they report it to the rest of the community. For example, a GIS website that allows citizens to report information about a wildfire or specific animal’s nests are two examples of the application of VGI in citizen science. Another example can be a system that allows users to upload their trajectory and then use those trajectories to monitor the traffic. In fact, any geographic information that is collected by volunteers to study any specific issue is a case where VGI can be used in citizen sciences [13].

User-generated Content
User-generated content is referred to a content or information such as text, photo, or document that is shared by users of online platforms such as wikis [14]. The rise of user-generated content happened at the same time web 2.0 allowed users to share their content [14]. The social media are a good example of platforms where users produce content and share it over the web. Usually, there is a community where the users belong, and they publish their content to share with the rest of the members of the community [14]. Internet forums, blogs, and wikis are the most famous places where user-generated content is shared [14]. Usually, a pool of information is created in these communities [13]. The geographic data that contributors to OpenStreetMap produce is a good example of user-generated content in the GIS world [13]. Therefore, user-generated spatial content is a specific type of user-generated content that should be considered [1][13]. Some criticism of user-generated content, such as data quality, is even more serious in spatial applications because they have been collected by non-expert members of the community [13]. Considering the fact that user-generated content is collected by a variety of users, the produced content is not necessarily consistent [15]. Thus, an important effort should be made to
process the user-generated content before being able to use it properly [15]. [1] believes that in terms of VGI, user-generated content can provide us with the ability to supply information and update them on a regular basis for existing databases. [1] mentioned that the geotagged photos of Flickr are a good example of user-generated spatial content that can be a source of useful information for updating existing databases. In terms of VGI, the generated content and the order in which the content is generated (places that are mapped) can indicate the priorities and interests of the contributors [16].

Crowdsourcing
Based on Lexico’s dictionary (powered by Oxford), crowdsourcing is getting a task done by a variety of people either paid or not [17]. In fact, crowdsourcing is outsourcing a task or a series of tasks to the crowds of people who may do it as part of a contract or just as a volunteer service [18]. Wikipedia defines crowdsourcing as a model of sourcing in which some services or information or other kinds of products are delivered to a company or organization by using the ideas, expertise, and finances of a large group of people [19]. The major difference between outsourcing and crowdsourcing is that in crowdsourcing, the task is done by a large group of citizens, while in outsourcing, the task can be done by any individual [19]. Internet is usually used to distribute the task and information among the community, and as a consequence, crowdsourcing increased by the growth of the Internet and its accessibility [19]. One of the challenges of the crowdsourcing of spatial data is to collect different results and put them together to make a unique, consistent final product [20]. Crowdsourcing spatial data has been successfully applied in a number of domains, including disaster management, tourism, and etc. [21].

Different types of VGI
VGI can be classified based on the type of information that it provides. From this point of view, there are three main classes, including text-based, image-based, and map-based VGI [22]. For example, geo-tagged microblogs such as geotagged tweets, geo-tagged images in Flickr, and similar services and geo-tagged videos are different types of VGI [22]. The online platforms that allow the contributors to draw map features and add attributes to them are considered as the map-based VGI [22], [23]. In map-based VGI, the contributors contribute directly to create or modify the geographic features or add new attributes to existing features [22]. Thus, in map-based VGI, in general, the geographic part of the contribution is more considerable, and usually, the contributors are implicitly contributing to generating geographic content [22], [23]. In text-based VGI, however, the attributes or the geographic information is usually achieved by text mining methods or direct contribution of the citizens [22].

VGI data can be classified from different point of views. One of the differences between VGI and user-generated spatial content is that in the case of VGI, the participation of the user in the generation of the content should be voluntarily [24]. Therefore, the applications that collect the trajectory information from cellular phones without
the direct intention of the person may not be considered as VGI. Generally, VGI can be categorized in 2 different cases: explicitly volunteered and implicitly volunteered data [24]. A tweet that is an example of explicit volunteered information and the information that people add to OSM is explicitly volunteered information [24].

VGI can further be categorized into groups based on the fact that whether or not the geographic data is explicit or implicit. For example, a tweet that talks about a specific place is a geographically implicit information, while a tweet that is geo-tagged is an explicit information [24]. In VGI, human acts as a sensor, depending on active or passive sensing; the type of VGI can be categorized [24].

VGI Applications

Considering the fact that VGI provides an extensive amount of freely available geographic information, it can be used in a wide range of applications and improve the traditional tools and techniques. VGI has been successfully used for humanitarian purposes. In the case of earthquakes, OpenStreetMap data is used to help the search and rescue teams in the regions where no authoritative data were available [25]. In addition, VGI is used for disaster management [26]–[28] and intelligent transportation [29], [30]. VGI has been used to evaluate public opinion about the large scale projects [25]. It is also used for mapping mental and contagious diseases in urban areas [31]. VGI can be used as a way of studying global mobility patterns [32]. Map-based VGI can be used for a variety of purposes. Practically, all the purposes that need geographic data. For example, OSM data is used in urban planning [25]. Map-based VGI is also used for facilitating the routing of the people with motor disability [33]. In addition, VGI can be used for land-use modeling [34]. It can be concluded that VGI is a valuable source of information, even though extracting the useful information from the flow of VGI needs precise modeling and tools.

Spatial Data Quality

Lexico’s dictionary (powered by Oxford) defines quality as “The standard of something as measured against other things of a similar kind; the degree of excellence of something” [35]. Quality assessment is an essential part of any process. In terms of geographic data, various researches have been undertaken to define the quality of geographic data. Geographic data cannot be used properly in different applications unless its quality is measured in a standard and measurable way. Therefore, in the 1980s the discussion about the quality of geographic data increased in the US Federal Government and some other universities [18]. These discussions resulted in a consensus of the researchers over 5 principal elements of geographic data quality, including positional accuracy, attribute accuracy, logical consistency, completeness, and lineage [18]. The quality of geographic information should be described in a way that it can have the same meaning for all the producers and users of the data because if the quality is not expressed in a unique standard way, then it can make confusion. International Organization for Standardization (ISO) tried to address this need and published a
The elements of quality described by ISO 19157 standard are: completeness, logical consistency, positional accuracy, thematic accuracy, temporal quality and usability [7]. Completeness is an element that evaluates the
presence and absence of the geographic features or their attributes from the database [7]. If there are some extra features in the database, commissions are occurred, while if there are some missing features, omissions happen in the database [7]. Completeness consists of two parts: data completeness and model completeness [36]. Data completeness refers to the relation between the features in the data set and the features in the real world, while model completeness refers to the degree to which the model that describes the application needs is complete [36].

Logical consistency evaluates whether or not the data is in line with the rules and structures [7]. Based on ISO 19157, standard logical consistency consists of four parts: conceptual consistency, domain consistency, format consistency, and topological consistency [7]. It describes how well attributes, relations, and features are in line with data specifications [36]. Evaluation of logical consistency depends on the data structures and models that describe the nature of the data [36].

Positional accuracy refers to the accuracy of the position of the features on the map in comparison to the reality [7]. Due to the fact that determining the position of the features on the surface of the Earth is done by a set of measurements, the calculated coordinates will never be exactly correct [18]. The positional accuracy of the features of the map is determined by equipment used, operator policy, digitization policy, and source material [36]. In order to evaluate positional accuracy, the position of the feature should be compared to its “true” position on the surface of the Earth [36]. Positional accuracy follows the rules of error propagation [36]. Numerical assessment of positional accuracy is easier than other quality elements because it is related to coordinates that are by nature numeric. Root mean square average is a frequently used method for evaluating the positional accuracy of features [36].

Thematic accuracy refers to the degree of correctness and accuracy of the attributes that describe geographic features [7]. In the ISO standard, temporal accuracy refers to the accuracy of the temporal attributes and the accuracy of the time measurements [7]. Temporal information describes the date of data acquisition, the time of the last update, and the period in which the data is considered valid [36]. Information about creation, modification, and deletion of features should be evaluated in temporal quality assessment [36].

ISO standard considers usability as the last element of data quality [7]. Usability is defined and measures based on the different needs and requirements of the user in each application [7]. Thus, usability is not defined for each dataset, but it is defined based on the application that the dataset is used for. In fact, this element of ISO standard refers to the concept that is called “fitness for use” by other researchers [37]. This concept is related to the fact that the quality of data should always be evaluated in relation to the application because a data set that is not qualified for one application may be qualified enough for another application. Thus, without considering the application, evaluating the quality is not complete.
There is another classification for spatial data quality that believes that there are two main categories of quality: internal quality and external quality [5], [37], [38]. External quality of the data refers to the “fitness for use” of data in the specific application that the data is going to be used [5]. On the other hand, internal quality assessment explores the degree to which the data is in line with the rules and predefined specifications [5]. In fact, ISO standard refers to 5 internal quality elements, and the sixth quality element is usability that refers to the external quality assessment. External assessment of quality depends on the application and requirements of the user, while internal quality is independent of application [37]. External quality also is referred to as “fitness for use” of the data set for a specific application [37]. Internal quality depends on the quality of measurement equipment, the degree to which the data meets the standards, and how well the data is in line with the data structures and other criteria [5].

VGI quality

As mentioned in the previous sections, the advent of Web 2.0 enabled the citizens to produce content and share it over the internet. An important part of this content has a geographic nature. In recent years, thanks to the growth of the internet and other technologies, citizens are more and more involved in the process of geographic content production [18]. Traditionally, geographic content is produced by organizations and governments that follow specific rules and guidelines [10]. Quality assurance in mapping organizations is enabled in two ways: quality control rules and procedures to ensure that measurement is precise, taking some samples from the produced maps, and comparing it to the reference sources [18]. However, these days a large percentage of geographic content is produced by the individuals who are not necessarily familiar with GIS and spatial data quality concepts [10]. Thus, a serious concern regarding VGI is the quality of the user generated content because the majority of VGI is generated by non-specialists who are not following any specific guidelines for quality control [39].

A percentage of VGI is simply created by digitizing aerial images with volunteers who are not even familiar with the neighborhood, a phenomenon that is called “armchair mapping” [4], [40], [41]. The fact that non-expert, armchair mappers are participating in VGI, causes a huge concern about how we can trust VGI and use it in different applications [10]. Therefore, various researches have been done to evaluate the quality and credibility of VGI data.

[18] proposed three main quality control mechanisms for VGI including crowdsourcing, social and geographic methods. These three mechanisms are not dealing with evaluating the quality of the generated content, but they are general ways to ensure that the production will work well. The reason that we need to develop new methods for evaluating the quality of VGI is that first, the production rate of VGI is so high, and traditional quality control
methods are not efficient. thirdly, there is a great difference in the nature of the methods of data production in VGI and in traditional ways of collecting geographic data.

Crowdsourcing means solving a problem by referring it to a vast number of volunteers [18]. Thus, we depend on the wisdom of the crowds to collect the information by sensing the environment [18]. The crowd can not only generate the information, but they can also detect the errors in the content [18]. This feature of the crowdsourcing is, by nature, a mechanism of quality control [18]. This phenomenon is a famous fact in computer science that expresses that if there are enough contributors to a citizen science project, the bugs and errors are automatically detected and corrected by the community members [42]. Therefore, crowdsourcing is both the mechanism of data collection and quality control [18]. In the case of OpenStreetMap, the contributors detect and correct the features or the parts of the map that they believe are wrong. If a great number of them work on the neighborhood of the map, it can be expected that the errors are detected and corrected by the contributors.

The second mechanism proposed by [18] for quality assurance of VGI is a social approach. This mechanism is also called the “hierarchy of trusted individuals” that control the content that is generated by others [18]. Based on this mechanism, a group of senior members of the community should supervise the procedures and the content that is produced by the other members [25]. Then, the data should be verified and accepted by the elite group before publishing it on the internet [18]. This method is applied in a number of online communities, such as Wikipedia and OSM [18]. This group of expert users can prevent the occurrence of errors and even vandalism [6].

The third mechanism of VGI data quality assurance is the geographic approach [18]. Based on the geographic approach, there are a set of rules and syntaxes that the geographic features follow [18]. Thus, by checking those rules in the generated content, we can ensure that errors are detected and removed from the database [18]. For example, a geographic rule about an island is that it should be surrounded by water. Therefore, these rules should be defined, and the validity of the new content should be verified by those rules. [43] used a spatial data mining approach to find the geographic rules inside the authoritative data sets. They used an automatic rule detection algorithm to find the topological relations and rules among different features of the map [43]. Then, they extracted the rules for forests, parks, and meadows to verify the newly generated content with the previous rules [43]. [43] is an example of using geographic mechanisms for validating the quality of VGI.

In addition, [11] believes that the credibility of VGI is an issue that needs extensive research because there is a lot of information about the traditional sources of spatial data, while about VGI data credibility, there are not enough research. In addition, [11] argues that considering that VGI is a new and relatively fast-changing market, there is a need to investigate the credibility of VGI. One possible definition for credibility is the accuracy of the information in its traditional meaning [11]. [11] believes that it is essential that the wisdom of academic crowds
be used for evaluating the credibility of the geographic data that is produced by the networks of volunteer citizens.

OpenStreetMap

OpenStreetMap is an online project that aims to provide the resources for volunteers to participate in the process of mapping the world and, in the end, to provide a freely accessible map of the world [44]. The purpose of this project is to provide free geographic data of the world that are updated with the help of the volunteers [44]. OpenStreetMap can be considered as a map-based geographically explicit type of VGI [44]. This project started in the University College London (UCL), where Steve Coast, the founder of OSM, studied [45]. OSM started its work in 2004, and since then, it is continuously growing in terms of the amount of information that is stored in its database [45]. OSM provides users with tools to edit the map and add and remove features [45].

![OpenStreetMap website](image)

Figure 1-3. OpenStreetMap website

The fact that Bill Clinton, former president of the USA, decided to provide free access to GPS data in 2000, improved the methods of data collection by GPS receivers [45]. OSM uses GPS receivers as a method of data collection. GPS trajectories can be used to map the roads. OSM has three main sources of data including: digitizing aerial images, processing GPS tracks, and import of geographic data from authoritative sources [46]. Yahoo has accepted to provide OSM with free base images that enable users to produce geographic content by digitizing the images [46]. Unfortunately, there is no way to understand how each geographic feature is added to the map (by digitizing, GPS, or upload of authoritative organizations) because OSM does not save this kind of information in its database [5].
Contributors of OSM join the project with different motivations. The number of OSM users has been almost constantly growing over time (2004-2020) except for a few occasions when a number of contributors decided to withdraw from the project because of different reasons [47]. [48] realized that events could affect withdrawal rates from the project. For example, when the British national mapping agency released geographic data of the country freely, it disappointed many contributors to the OSM project [48]. Another event that affected the withdrawal rate was the license change of OSM [48]. [48] estimated that almost 2000 contributors quit the project after the license changed.

[49] evaluated the behavior of the OSM project contributors. They evaluated factors such as the number of nodes, mean length and sinuosity values of the road network in OSM. By evaluating the data of OSM between 2007 and 2017, they realized that at the beginning, the contributors added the data of main roads such as highways and motorways. On the other hand, at the end of the period, the residential roads and pedestrian roads were added [49]. Thus, [49] concluded that the wider roads were mapped before the narrow ones. In addition, they realized most of the users tend to map short and straight roads rather than long ones [49].

OSM Data Structure

OSM data is used in a wide range of applications. Facebook, Foursquare, Mapquest and Seznam are some examples of users of OSM data and map [44]. Geographic features (roads, hospitals, ...) in the OSM database
are stored using a geographic part and an attribute part [50]. The attributes, which are the characteristics of the objects in the real world, are stored in the database as tags [45], [50]. Each tag represents a characteristic of the object using key = value pairs. The geographic part consists of three main groups: nodes, ways, and relations [45], [50]. This model is not following the traditional methods of GIS, where points, lines, and polygons are used to represent the features [51]. Nodes are simply points that are stored using a pair of coordinates in the WGS84 reference system, and they are useful for storing features without size [5], [44]. On the other hand, ways are ordered sets of nodes that are used to store linear features (line and polyline if they are open and polygon if they are closed) in the OSM database [44], [52]. Relations are ordered sets of nodes and ways that are useful for storing the relations among the features of the map [5], [44], [52]. For example, OSM uses relations to store turn restrictions for road features in the database [44]. All edits that contributors are doing in the database of OSM are stored in a PostgreSQL database (which is an open-source database) with PostGIS extension [44]. PostGIS is an open-source extension for PostgreSQL that enables storing spatial data such as point lines and polygons. In addition, PostGIS provides a variety of functions for working with these spatial features.

OSM Tags

As mentioned earlier, tags in OSM are simply a “key=value” pairs that represent characteristics of an object in the real world [45], [50]. The metadata of OSM is stored in the tags [5]. Unlike the geometric part of the object, the tags can change very frequently [5]. The tags that are assigned to the features are accessible through the TagInfo (https://taginfo.openstreetmap.org/) service [25]. This service allows the users to find out the most frequent keys and values that are used in OSM [25].

OSM provides a list of possible key = value pairs for contributors to use in the tagging process of OpenStreetMap (https://wiki.openstreetmap.org/wiki/Map_Features). This page describes what the difference is between basic tags and suggests a set of unique tags to increase the uniformity of the map. For example, on this page, there are guidelines to differentiate between the value of different highway keys such as primary, secondary, tertiary and residential [50]. Considering the fact that the contributors do not follow these guidelines strictly, there is an uncertainty about the semantic information available in OSM [53]. For example, maybe one contributor adds “primary,” and the other one adds “secondary” as the value of the highway key.

Even though OSM provides a list of possible basic tags, the contributors can select any tag that they think is suitable for describing the object [51]. Thus, there is no restriction for using keys and values for tags in OSM [45], [51]. There is a huge debate about whether this method of tagging is efficient or not. This free-style tagging provides freedom for the contributors to add any information to the map. However, there is not enough control over the tags that contributors use in OSM [45]. [53] believes that this flexibility of the tagging process can cause a noise in the attributes of the features and an uncertainty about the semantic information of the map.
Sometimes one key (such as name) has more than one value. [53] believes that contributors disagreement, spelling errors, and lack of knowledge about the neighborhood can cause assign of more than one value to a single key. It is possible that a feature is edited by more than one contributor or more than once by a single contributor. In this case, if the number of edits on a single feature in OSM is more than a predefined threshold, the feature is called “heavily-edited feature” or “popular feature” [53]. The number of heavily edited features on the map is not considerable [53].

Using Taginfo, researchers can explore the tags and have information about the tag content of the OSM database. Figure 1-5 illustrates the distribution of values for the key “highway” in the whole database of OSM.

![Distribution of values](image)

Figure 1-5. Distribution of values for the key "highway" (Source [54])

The majority of the features that are tagged by the key “highway” has the value of residential. It means that the most frequent tag in the database is “highway = residential”. “Service”, “Track” and “Unclassified” are the most frequent values in the database of OSM.

Motivation of Contributors

Openstreetmap is an online community where a number of citizens gather and contribute to achieving a common goal [48]. In these online communities, the success of the project depends largely on the contribution of the members [48]. These contributors have a variety of different reasons and motivations for contribution, and they
may withdraw from the community if they lose their motivation [48]. Different studies showed that people have different motivations to contribute to the OSM project. A number of examples of these motivations are being interested in providing free information for everyone (data democratization), feeling useful by being part of a community (OSM community) [45] or having some negative feelings for national mapping agencies who earn money by selling it to the citizens.

Tools to Edit or Work with OSM Data

Basically, there is no real difference between editing data in OSM or other online communities. However, considering the fact that OSM contains spatial data, it is necessary that it provides users with tools to create, edit, and delete spatial features [13]. For example, tools for digitizing roads from aerial images. Or tools to upload spatial data into the OSM database.

Figure 1-6 illustrates the market share of each OSM editor tool. Based on this figure, Potlach and JOSM are the most frequently used editors on the market. There is not a huge difference among them, and contributors can select the editor based on personal preferences and the operating system that they use.

The second category of tools of OSM are the tools that are developed for working with OSM data. One of the most famous open-source tools to work with downloaded OSM data is Osm2postgresql (https://wiki.openstreetmap.org/wiki/Osm2postgresql). This tool allows users to upload the downloaded OSM data into a PostgreSQL database with PostGIS extension [56].

OSMPythonTools is an open-source Python library that allows manipulation of OSM data [56]. This library internally is built based on Pandas and Matplotlib python packages [56]. Moreover, there are a variety of tools based on R to explore OSM data. These packages include osmar, osmdata R Packages [56]. In addition, several
plugins are developed for QGIS, including QGIS OSM Plugin. This plugin can explore both spatial and attribute values of map features.

OSM Data License

OSM allows everyone to access, download, edit, and use its data freely because the data of OSM is under Open Database License (ODbL) [57]. This license allows any use of the data as long as it is mentioned that the data is downloaded from the OSM database, and also, the results of the work are released under Open Database License (ODbL) [57]. The license of OSM data was not ODbL since the beginning of the project. This license has changed because the previous license was not suitable for spatial data since it did not allow processing or combining it with other data [44]. Therefore, on 12 September 2012, the license of the OSM database changed to ODbL that allows any use of data when the source (OSM contributors) is cited [44].

Humanitarian OSM

OSM is not only a mapping project, but it has a social dimension [57]. For example, in 2010, when the earthquake happened in Haiti, a group of OSM contributors started to map Haiti [57]. The motivation of this group was to help search and rescue teams to have maps of Haiti [57]. Therefore, 600 contributors from across the world helped to provide a map of Haiti in a short time [57]. Finally, the Humanitarian OpenStreetMap Team (HOT) was created, and in 2013 it was registered as a non-profit organization in the U.S. [57].

OSM data quality

Assessing the quality of the geographic data is necessary before users can use the data in any application. However, describing the quality of the data is usually difficult and challenging [37]. Without understandable information about the quality of a data set, there is always a risk of misuse of data [37]. Therefore, one of the most important issues in quality assessment is assessing “fitness for use” [37]. [37] argues that there are two main meanings for the “data quality” in the literature. The first category tries to evaluate the quality by evaluating the presence of errors, which is called “internal quality” [37]. However, the second category tries to evaluate the quality of data by evaluating how good it answers the needs of the user (external quality) [37].

As mentioned earlier, most of OSM contributors are not necessarily experts in GIS or spatial data collection. Thus, there are serious concerns about both the internal and external quality of OSM data [58]. It is important to evaluate the quality of OSM before being able to use it in a specific application. In this section, a literature review of the research works that deal with the quality of OSM data is provided. Considering the fact that this research pays attention to the quality of data on roads and buildings, these two data layers are evaluated in separated subsections.
proposed a model for evaluating the quality of OSM tags. They used Taginfo as a tool to execute queries about the tags of OSM. Taginfo can be considered as a tool that helps researchers to find out information about the tags that contributors have added to the OSM database [54]. In order to have some quantitative measures to evaluate the quality of tags, [55] proposed the six following quality measures: “completeness”, “compliance”, “consistence”, “granularity”, “richness” and “trust”. Regarding the tags describing businesses, they found that the tags describing the name of the business is far more complete than the tags describing the phone number or opening hours [55]. Regarding the road network, they realized tags describing the name are far more complete than tags describing “oneway” or “maxspeed” [55].

proposed a model that uses the history of all edits on one feature and improve the positional accuracy of the feature. They use the full history of the OSM database [59]. The model offered by [59] finds all the versions of one feature, then filter the outliers [59]. In the next step, a method based on the Voronoi diagram is applied to find out the best position of the feature [59]. They found out that their method can increase the positional accuracy of the linear features by 14% [59]. The principal idea of this model was to find out the average position for each feature in all the versions available in the full history file of OSM.

asked three different groups to import data into the OSM database. The three groups were students, local community members, and also OSM regular contributors [57]. They were asked to import the data. Then, their Spatio-temporal contribution were analyzed to see how this task can affect their behavior [57]. The results of the research showed that the contributors who had external motivations for contribution did not continue their contribution [57]. For example, most students stopped contributing after the deadline of the course [57]. However, the regular OSM contributors continued their contribution after it [57]. They found out that the import task could be useful for motivating new contributors in OSM [57].

evaluated the life cycle of the contributors in the OSM project. They analyzed the history of all edits that have been done by any contributors to find out when a registered contributor quit the project [48]. They used time series analysis and survival analysis to analyze the behavior of the users of OSM [48]. They realized that the life cycle of the contributors could be divided into three phases [48]. The first phase is called “evaluation,” and it is related to the time that contributors are becoming familiar to the project [48]. The second phase is called “engagement,” and it refers to the duration that contributors continue to contribute after a large number of them quit the project [48]. The last phase is called “detachment,” and it refers to the duration that after a long period of contribution, even the dedicated contributors quit the project [48]. They used the full history dump file of OSM, and they extracted all the changesets. Then, they calculated a rectangle that all the edits of a changeset happened inside it [48]. After that, they extracted the local time of a contribution. Finally, they tried to explain the withdrawal of contributors based on the events that happened during the life of the OSM project [48]. The fact
that the contributions have been made in a very irregular way makes it difficult to find out if the contributor quit or he/she is waiting for a free time to contribute again [48].

The attributes in OSM are, in fact, the tags. These tags are “key = value” pairs that contributors use to describe the features of the map [60]. There is no rulebook or strict regulation for tagging processes. Therefore, contributors select the tags based on their own opinion [60]. One of the researches that tried to analyze the quality of the tags is [60]. [60] tried to answer this question: “to what extent the contributors to OSM follow the general guidelines of tagging” [60]. In order to have a better result, they selected 40 cities from all over the world [60]. They realized that, in most cases, the contributors do not follow the guidelines, and the tags do not comply with the rules of OSM [60]. They concluded that contributors in the 40 cities did not use the same level of annotation [60].

A number of researches tried to analyze the contribution patterns of OSM [61]. [61] found out that the majority of the data of OSM is added by a minority of the contributors, and other contributors did not play a role in data creation. Contribution inequality exists in all the online collaborative communities [61]. [61] tried to answer the following question “how the contribution patterns change during the life of the OSM project?”. They compared the behavior of the two groups of the contributors “the vocal minority” and “the silent majority” [61]. They realized that the size of “the silent majority” group is growing faster than other groups of contributors [61]. They realized that in Germany in 2007, 20% of the community added 95% of the data, while in 2014, just 5% of the members made the same contribution (95%) [61]. They differentiated between the behavior of the contributors in the countries with many imports and the countries with fewer imports such as Germany and France [61]. They concluded that contribution inequality is even higher in countries where a huge amount of data was imported to the OSM database [61].

[9] argued that the reliability of OSM data can be evaluated by measuring the completeness and speed of updates. Thus, they analyzed how complete OSM is and how fast the new information is added to the database [9]. In addition, they argued that people usually add information about the places that they know. Therefore, there should be more contribution in urban areas than in rural areas, and the OSM in urban areas should have higher completeness [9]. They tried to find out the relation between the population and income of a region and the completeness of that region in OSM. They also took into consideration the two following factors: 1) the number of contributors working in each region and 2) the number of days since the last update. They concluded that in the more populated areas, OSM has higher completeness and also it is updated faster [9].

[62] evaluated the completeness and positional accuracy of the point features of OSM in the United States. They used a two-step method to find the corresponding features in OSM and in an authoritative database [62]. In the
first step, they used a spatial join, and in the second step, they manually joined the remaining points [62]. Finally, they understood that the quality of the schools is acceptable and the error is spatially distributed [62].

[63] used a photogrammetric approach to evaluate the quality of linear objects of OSM. First, they used a vector adjustment model to calculate the coordinates of the points. Then they used the Root Mean Square Error (RMSE) to calculate the difference between the coordinates of the corresponding points [63].

Between October 2009 and July 2012, almost 200 OSM users were blocked because of suspicious activities [6]. These kinds of activities that add errors intentionally to the database are a big threat to the main objective of the project [6]. Therefore, [6] proposed a rule-based prototype to find out the potential vandalism activities in OSM [6]. They investigated the detected vandalism activities to discover the suspicious activities [6]. They also took into consideration the methods used in Wikipedia to detect vandalism [6].

The Quality of OSM Roads

Road data is an important part of OSM data, and it was the primary goal of the OSM project. The quality of roads is very important for routing applications or other uses of the data. There are many researches that tried to develop methods and tools to evaluate the quality of the OSM road network. [52] evaluated the quality of linear data in VGI. As [52] argued, the quality of linear data sets can be very important for many cases, such as routing applications. [52] proposed a seven-stage-model to find corresponding features between two linear databases because it is the first step in the quality assessment process. Finally, he used the buffer method proposed by [64] in order to evaluate the positional accuracy of the OSM road data. The main contribution of the thesis of [52] is combining descriptive and geometric information to find corresponding objects in the two databases.

One of the first and most important researches on OSM road data has been done by [39]. He used the buffer method to evaluate the quality of OSM roads. Based on this method, the length of the OSM roads that fall within the buffer of X m around the reference object can be an indicator of the positional accuracy of the OSM roads [39]. He realized that almost 80% of the roads of OSM lie within 6m of the reference road network [39]. In the UK in 2010. Moreover, he observed that nearly 30% of the roads of reference data are added to the OSM database in the first 4 years of the project. He found that almost half of the roads in the database of OSM are not named in 2010 [39].

[23] evaluated the quality of OSM roads and buildings in the Ottawa-Gatineau region. He used a buffer method to evaluate the positional accuracy of OSM roads [23]. In this area, in 2018, 70% of the roads were within a distance of 5m from the reference roads, while only 76% of the OSM roads were within a distance of 10m from the reference roads [23]. He realized that there is no considerable difference between the positional accuracy of the major and minor roads [23]. [23] also evaluated the accuracy of geocoding information of OSM in Ottawa-
Gatineau, and he realized that 96% of this information matches the reference ones. He realized that in 2017, 93% of the reference roads exist in OSM database [23]. Moreover, he found out that there is a surplus of OSM roads in this city in some neighborhoods. This study used OSM full history file that allows investigation into all edits and changesets that exists in the history of OSM. In addition, this study calculated the completeness of buildings based on unit-based and object-based methods.

[65] did valuable research on the quality of the French OSM database. He evaluated geometric, attribute, temporal and semantic accuracy of OSM as well as completeness, lineage, and usage of the data. This research is one of the few researches that investigated almost all elements of data quality at the same time. In terms of the positional accuracy of point objects, he found that the positional error is mostly between 2.5m to 10m. He used Euclidean distance to measure the positional error of point objects. In terms of roads, the positional error was between 5m to 12m in 2010 in France [65]. [65] argues that the number of tags increases linearly with the increase of the number of contributors in each region of France in 2010. [65] observed that almost all of the tags and semantic information of primary roads in OSM French database are correct, while only half of the tags of secondary roads are correct. The mismatch between OSM road types and reference road types can be because of differences in the definition of the two types of the roads. For example, some residential roads may be considered as tertiary in OSM definition of road types. In addition, [65] argues that there is a clear positive correlation between the number of OSM contributors in a region and the number of objects on the map.

[5] evaluated the quality of Canadian road network in 2017. This research has two parts: in the first part the completeness, positional accuracy, and attribute accuracy are evaluated, and in the second part, a statistical analysis is done to measure the correlation between the editing history and the accuracy of OSM data [5]. He observed that 77% of the OSM roads in Canada in 2017 are within 5m of the reference roads, while only 5% of the roads are within the distance of 5m to 10m [5]. [5] observed that there is no significant difference between the positional accuracy of different types of the roads. In 2017, the primary and secondary Canadian roads had a lower tag presence in comparison to local roads [5]. [5] observed that the attribute accuracy of prefix, suffix, and street names is 87%, 71%, and 57%, respectively. [5] argued that only 39% of streets have a correct number of lanes in the OSM database. Moreover, this study found that urban areas received more contribution and more completeness. There is a positive relationship between population and the completeness of the roads. [5] found that there is not considerable relation between the OSM editing history and OSM accuracy.

[59] argued that the edit history of a feature in OSM could give us information about its exact place. Thus, they proposed a five-step algorithm to improve the positional accuracy of road networks of OSM. [59] proposed an algorithm that generates the Voronoi diagram of all versions of a feature in the history of OSM. Then, this Voronoi diagram is used to find the most probable position of the feature. [59] found that this method increases the
positional accuracy and completeness of the OSM road network. The basic idea of this research is to use the edit history of the OSM features (the behavior of contributors for editing it) for estimating the exact position of the features. The method proposed by [59] increased the positional accuracy of the roads network in Tehran by almost 12%.

[49] analyzed the history of OSM road data and tried to determine the behavior of contributors in Turkey. They categorized the behavior of the OSM contributors by evaluating their profile and their edit history. [49] have taken into account indicators such as the number of nodes, ways contribution, and sinuosity values of roads. They realized that the level of experience of a contributor has a positive relationship with the type of its contribution, and the more experienced a contributor is, the more his contribution is detailed [49]. Moreover, this study concluded that most of the OSM contributors contributed to adding straight roads to the map. They realized that there is a considerable difference between the contributors’ behavior in editing the wide roads and narrow roads [49].

The majority of the studies that evaluated the quality of OSM roads used the method of comparison to reference data. However, the usage of the OSM roads for a specific application may be more important. [66] evaluated the quality of user-generated content for routing applications. Thus, this study evaluates the usage of spatial data. They compared the length of the shortest path between a number of points in the study area. Then they compared this measure with the one of the reference data. Thus, they measured the difference between the length of the shortest path of OSM and the shortest path of the reference data [66].

The Quality of OSM Buildings

There are a number of researches that tried to evaluate the quality of OSM building data or to find measures that can describe different elements of OSM building data quality in a quantitative way. Generally, there are fewer studies on OSM buildings quality than OSM road quality. Considering the fact that buildings are polygonal data, while roads are linear data, the measures of quality that are proposed for roads may not be sufficient to describe the quality of buildings. This section is a literature review about OSM buildings quality assessment.

One of the first studies on OSM buildings data quality was done by [67]. They measured the completeness of the OSM building data in a number of German cities. In addition, they evaluated the evolution of completeness over time. They used two main methods for completeness assessment: unit-based method and object-based method [67]. They concluded that object-based methods are more accurate because it first finds the corresponding features and then calculates the completeness [67]. Moreover, they concluded that the completeness of OSM building data is higher in urban areas than in rural areas, and they realized that there is a clear negative relationship between the distance from the city center and completeness [67]. They observed
that in the region of Saxony in Germany, the OSM building data completeness increases by 8% per year [67]. They believe that unit-based completeness calculation can result in underestimation or overestimation of the completeness [67].

Another complete research that evaluates different aspects of quality is [68]. They evaluated completeness, semantic accuracy, positional accuracy and shape accuracy of the building footprints [68]. They realized that the OSM buildings data is not as detailed as the reference data. Thus, they concluded that OSM building data is a simplified version of the reality [68]. In terms of positional accuracy of building footprints, they observed that there is an error of 4 meters on average for the city of Munich [68]. In this research, the degree of similarity between the shape of building footprints in OSM and the reference databases are considered as the measure of shape accuracy [68]. They used a turning function to model each building footprint and then the distance between two turning function indicates the degree of similarity of the two shapes [68]. In this research, the overlap method is used to find the corresponding features. This research realized that the average distance between the two corresponding building footprints is 4.13m, which means that the accuracy of this data is almost equal to the accuracy of aerial images used as base maps of OSM [68]. [68] believes that the positional error is because of the oblique view of the sensor that took the base photo of the city, while the lack of details in OSM building footprints, such as balconies, is due to the low resolution of the base photo.

[51] evaluated the quality of OSM roads and buildings data for the purpose of adding them to the government databases. This research showed that the average Hausdorff distance for buildings footprints exceeds 10m [51]. They observed that, in some cases, the adjacent buildings are grouped and represented as one building [51]. In addition, the polygons (building footprints) are simplified [51]. This study did not evaluate shape accuracy because they believed that there is no standard method for evaluating it. Finally, [51] concluded that for both buildings and roads, the OSM data quality is not comparable to standards of authoritative data, and it is not possible to integrate the two sources of data without ensuring the quality of OSM data. Moreover, they found out that the completeness of OSM data in commercial areas is high, while in residential areas and in areas with low population density, the completeness is low [51].

[69] mentioned that there is a huge uncertainty in completeness assessment of building data in OSM. In some cases, it is difficult to realize the limits of buildings in aerial images, and sometimes OSM contributors digitized a row of buildings as one single polygon. Thus, evaluating the completeness by counting method will result in underestimation [69]. [69] suggested merging the adjacent buildings into one big polygon and then compare the completeness using 3 areas: true positive, false positive, and false negative, which are % of agreement, % of commission, and % of omission, respectively. They realized that the mean value for completeness increased
from 33% to 44% when they merged the adjacent buildings [69]. As a conclusion, they suggested to merge adjacent buildings in OSM and in the reference buildings before evaluating the completeness [69].

[9] did a study about the quality of OSM roads and buildings in Brazil. They tried to answer the question of whether or not the indicators such as population, income, urbanization, and GDP per capita can affect the completeness and temporal accuracy of OSM data [9]. They advocated that people are interested in editing their own neighbourhood in OSM. Thus, in places where the population is high, we expect that many edits occur, and the completeness increases [9]. They used the Pearson correlation coefficient to measure the correlation between the quality measures and indicators [9]. They found a strong correlation of almost 0.50 between completeness and population, while the correlation between income and completeness was almost 0.30 [9]. The author of this thesis believes that the Pearson correlation coefficient is not suitable because it measures the linear relation between the two variables, but we search for any monotonic relation. Thus, I believe that Spearman’s correlation coefficient can better serve our purpose.

Given that OSM data is useful for places of the Earth where no reference data is available, evaluating the quality of OSM based on comparison to reference data is not very efficient. Thus, [10] proposed buildings’ density of OSM as an indicator for building completeness of OSM. [10] measured the correlation between building density (building coverage ratio) and building completeness. [10] found an approximately linear relationship between these two variables. Consequently, he proposed building density as an intrinsic quality indicator. In addition, he found that there is a coefficient of 3.4 to 4 between building density and building completeness. In this research, the relationship between building density and completeness is calculated, but other quality measures such as positional accuracy, shape accuracy, and semantic accuracy were not addressed, and they can be the subject for further researches.

An comprehensive research was done by [25] to evaluate the suitability of OSM building footprints for urban planning purposes. [25] developed a set of ArcGIS models to measure different quality elements for OSM building data. He realized that the quality of OSM data varies across different cities in Canada [25]. He found out that OSM buildings have higher completeness in commercial districts of the city than residential neighborhoods [25]. This research tried to use simple models of quality evaluation because the purpose of this research was to provide urban planners with OSM data, and urban planners are not necessarily specialists in GIS. Thus, for other purposes, researchers may use more complex models to evaluate the quality of OSM building data. Moreover, he realized that city centers have the highest levels of completeness, and also the buildings in the center of the cities have more semantic information (Tags) [25]. He found that in small cities, the majority of buildings are commercial ones, while residential buildings are mostly missing from the OSM database [25]. In this research, the centroid method is used to find out the corresponding buildings.
[70] evaluated the completeness and spatial patterns of OSM buildings in China. They proposed the use of two intrinsic quality indicators: the number of buildings and building density [70]. [70] realized that in the majority of cities, GPD and OSM road length has an average correlation with the number of buildings in that city. In addition, he realized that the OSM building database in China is not yet near completion because there are many grid cells with no buildings inside them.

Considering the fact that the buildings footprint’s angles should normally be 90 degrees, [71] suggested enhancing the OSM building data by adjusting the angles to 90. In fact, [71] applied a squaring algorithm on the buildings’ footprints. They found that by squaring algorithm, the shape accuracy of building data is increased [71].

[72] introduced seven intrinsic quality indicators to measure the quality of OSM building data without comparing it to reference data. Intrinsic indicators are the indicators that provide a measure just based on the OSM data itself and do not require authoritative data as reference [72]. For example, how parallel the building footprints are in comparison to roads is an intrinsic indicator of OSM building data quality. Even though these indicators can provide some information about the quality of OSM without any reference data, the information is very limited and is not reliable [72].

[4] evaluated the completeness and positional accuracy of OSM buildings footprint data set in Italy. They found that the quality of OSM building footprints is comparable to the quality of an authoritative map when the map scale is 1:5000. They concluded that the OSM building footprint could be used in the majority of cases (including base map) [4]. [4] proposed a new method of feature matching based on affine transformation. This method uses a set of homologous pairs of points to calculate the parameters of transformation (such as buildings’ corners). Then, the affine transformation is used to find corresponding points and edges of the features [4].

In another research, [73] tried to estimate the type of OSM buildings based on their morphology. They believed that given that the buildings are built to serve different purposes, then their shape and size can be correlated to their type [73]. They were able to estimate the type of OSM buildings based on the size and shape of the footprint with 85.77% accuracy [73]. Among different types of buildings, residential ones can be detected by an accuracy of 90% [73]. Their methodology is based on clustering footprints into a number of groups [73]. In order to represent the shape of footprints in a quantitative way, they used a turning function [73]. Finally, [73] used a rule-based method to cluster the footprints.
Chapter 2 Evaluating the Quality of OSM Roads

Introduction

In recent years, Web 2.0 became very popular, and many websites are created based on this concept [2]. Before Web 2.0, the interaction between clients and servers was one-way [3]. Web 2.0 allowed users to produce data and share it on the Internet with other citizens [2]. Websites such as Facebook, wikis, and blogs are all examples of how Web 2.0 allows people to contribute to the process of content production [1], [2]. The term User-Generated Content (UGC) refers to the information produced and shared by users of Web 2.0 [1], [3]. Citizens can create groups and communities to collect and share information using Web 2.0 capabilities in order to analyze specific phenomena. The term Citizen Science is used to refer to those communities of volunteered citizens that contribute to data collection for a specific domain of science [3]. Therefore, by the advent of Web 2.0, citizens became able to gather information in collaboration with other citizens about any specific issue in the society. On the other hand, in recent years, technological advances in GPS receivers and smartphones facilitated geographic data collection [26]. Nowadays, it is very easy to find out the geographic coordinate of any point on the Earth by using handheld devices. Thus, collecting geographic data is not limited to surveyors or geographers anymore [26].

These technologies allow citizens to acquire geographic data, and Web 2.0 allows them to share it with the rest of the community [3], [18]. Goodchild termed this phenomenon Volunteered Geographic Information (VGI), and argued that this is the beginning of the post-modern era of geographic data production [3]. The geographic data that is collected by a large number of people is also called User-Generated Spatial Content (UGSC) [13]. In addition, the term crowdsourced geographic data describes the geographic data that is collected by a large number of citizens that intentionally contributed to the process [18], [45], [51]. Crowdsourcing geographic data refers to outsourcing the geographic data collection to the crowd [18]. VGI can be explicit or implicit based on how the geographic aspect is involved [1]. VGI is spatially explicit if the users acquire and share the data with the focus on its geographic aspects, such as a photo that is geotagged [1]. VGI can be in different formats. For example, a geotagged photo, a geotagged tweet, or a tweet that talks about a geographic location are all kind of VGI [1], [74]. Moreover, there is another type of VGI where users explicitly contribute to adding geographic objects to online maps. OpenStreetMap (OSM) is one example of this kind of VGI.

OpenStreetMap is a project that aims to produce a free geographic database of the world [53]. This project was founded by Steve Coast in the UK in 2004, grew very fast and became popular in the world [48]. A variety of data can be found in OSM, including road networks, building footprints, and land use maps [53]. Users of OSM
can produce geographic data in different ways. In the beginning, the main way to produce geographic data was to use a GPS receiver and collect some coordinates and later import them in the OSM database [6]. After November 2010, Bing Map Aerial Imagery was added to the OSM database, which allowed the users to produce data not only by GPS but also by digitizing aerial imagery [6]. In fact, it was not necessary anymore to be present in the location, and users started to do remote mapping. Based on the data model of OSM, all geographic features are represented as nodes, ways, and relations [45]. Nodes represent point features, while linear features and polygonal features are represented by open and closed ways, respectively [45].

The attributes of features are stored by tags in the database of OSM [45]. In the conceptual data model of OSM, tags are “key = value” pairs that can be added to the database to describe map features [53], [55], [60]. Users can select whatever tag they think is suitable to describe the geographic feature. However, there are general guidelines for tagging in (https://wiki.openstreetmap.org/wiki/Map_Features). For example, a dormitory can be tagged as “building = dormitory” and the name of the building can be added as “name = *****” [50]. TagInfo allows researchers to explore the tags of OSM and retrieve useful information [54].

Researches proved that users are more interested in adding missing geometries than adding tags to the features that already exist in the database [60]. In addition, it is also proved that the majority (90%) of the contributors do not participate more than once or twice in mapping [48]. The main goal of OSM is to provide access to free data for all the people of the world. Thus, the project started with the Creative Commons License [45] that allows everyone to use the data freely, but any product should be under the same license. After a short time, it turned out that this license is only suitable for text and photo, and it is not useful for geographic data because the geographic analysis should be used on a mixture of OSM data and other thematic information [45]. Hence, in 2012, the project decided to change the license to CT/ODbL, and due to this change, 400 contributors withdrew from the project [48].

OSM data is useful because the data collected by governments is often expensive, or it is not accessible for the public. In addition, the process of updating the data is very costly, and national mapping agencies may not be able to update the data [10]. On the other hand, the data of OSM is freely available for everyone, and the data is updated continuously [10]. Therefore, in many cases, the data of OSM can be helpful. Although OSM data has many benefits, the quality is one of the most serious issues related to it. Before VGI, the process of geographic data collection and mapping the surface of the Earth was done by expert geographers and land surveyors [60]. However, there is no need to be an expert in geomatics or geography to produce OSM data. Thus, it is crucial to evaluate the quality of this new source of geographic data [59].

Extensive researches have been done to evaluate the quality of OSM and to propose methods to ensure its quality. A number of researches tried to evaluate the external quality of OSM for a specific application [66], [75],
while the majority of researches tried to measure quality measure by comparing OSM data with another database [39], [70], [76], [77]. This method of quality assessment (by comparing to a reference data set) is precise, but it is possible only if a reference dataset exists. The reference datasets are sometimes expensive, or they are under licenses that restrict their application [10]. Therefore, this method of quality assessment is not efficient. In addition, the main purpose of OSM is to provide access to data even in the regions of the world that are not well developed, and there is no reference database. In those regions that OSM has higher completeness than reference datasets, or OSM is the only database available, the method of quality evaluation based on comparison does not work [5], [10]. Hence, it is necessary to develop other methods for OSM quality assessment.

[18] proposed 3 different approaches for quality assurance of VGI, including crowdsourcing, social and geographic approaches. Base on these approaches, the fact that VGI data is crowdsourced, guarantees the quality of the data because if there is an error in the data, other users will correct it [18]. This is known as Linus’s law, and it is tested on OSM data by [42], and the results proved that Linus’s law applies to VGI. In addition, to these three approaches, [22] proposed that data mining can be used on geographic data as another method to assure the OSM quality. A number of other researches tried to find out the indicators that can describe the quality of OSM for the regions that there is no reference data to evaluate the quality.

In this research, firstly, the quality of OSM in Québec Province has been evaluated in terms of completeness, positional accuracy, and attribute accuracy. Other measures of quality (such as temporal accuracy) were excluded from the domain of this research due to the limited access to geographic data of Québec Province. In the second step, correlations are calculated between a number of indicators of quality and the calculated measures of the quality. The result of this research provides information about the quality of OSM data in this province and helps us understand whether these indicators can be used to describe OSM quality or not.

OpenStreetMap Quality Assessment

In the case of OSM, the issue of quality is very important because the contributors who created the data were not necessarily experts in geomatics. In addition, [6] found various cases of intentional vandalism (importing error to the database) in the OSM project. In this section, the elements of geographic data quality in general and VGI and OSM quality measures, in particular, are discussed.

Spatial Data Quality

The users of geographic data cannot use it properly unless they are sure that the quality of the data fits their needs [37]. The quality of data is not an easy concept to describe. Therefore, many researches tried to address the quality issue and defined measures to describe its elements quantitatively (where possible). [37] classified
the meaning of data quality into two categories: internal quality and external quality. The former refers to the absence of error in the data set, while the latter refers to how the data fits the specific application in which the data should be used [37]. Usually, metadata describes the internal quality, but external quality should be assessed for each user separately.

In order to be able to share and use a dataset in different applications, it is first necessary to know the quality and, secondly, to describe the quality in a standard way and to make it understandable for everyone [18]. Therefore, the International Organization for Standardization (ISO) published a document “ISO 19157:2013 (Geographic Information -- Data Quality)” to provide a common understanding of the concept of geographic data quality [78]. Based on this standard, the elements of data quality are: Completeness, Logical consistency, Positional accuracy, Thematic accuracy, Temporal quality and Usability [78]. In this definition, usability refers to the external quality. Although the majority of researches evaluated the quality based on ISO elements, a number of other elements are also proposed by other researches such as attribute accuracy and lineage [36]. More explanation about these elements will be provided in relevant sections of the article.

VGI Data Quality

There is always a debate about the quality of VGI data because, unlike the commercial data, VGI is collected by the users of Web 2.0 who do not necessarily have expertise in geomatics or geography [62]. This problem is even more serious in case of descriptive information of OSM because OSM project does not force users to follow any standard for tagging [53]. Traditionally, the most frequently used approach to evaluate the quality of a geographic database is to compare the data with a reference database [64], but the most important benefit of VGI is that it provides data even for the regions where no commercial database is available [22].

Therefore, the traditional approaches are not useful for VGI quality assessment. [16] proposed that the quality of VGI can be evaluated based on the behavior of the contributors. [18] argued that crowdsourcing, geographic, and social are the approaches that can replace traditional methods. Crowdsourcing refers to Linus's Law, which says that if enough contributors work in a region, we can make sure that errors in the data are detected and solved [18]. The social approach offers the use of a committee of senior community members to check the data produced by junior ones [18]. The geographic approach emphasizes the fact that the cities are build based on a number of rules; thus, by applying those rules on the database, we can assure the quality of VGI [18]. [22] proposed that using data mining techniques on geographic data is one of the approaches that can be used for evaluating the quality of the data. One of the main differences between VGI data quality and traditional geographic data quality is that in VGI, the source of information (credibility of VGI) plays a very important role in describing the quality of data [22].
OSM Data Quality

Many researchers evaluated the quality of OSM data from different aspects. Majority of the researches tried to evaluate internal quality of OSM by comparison to a reference data set [4], [10], [39], [46], [68], [70], [76], [79]. On the other hand, a number of other researches evaluated external quality by considering the application needs [33], [66], [80]. Considering the fact that OSM provides different types of information, researches evaluated the quality of each type of data on the OSM including road network [5], [23], [51], [52], [70], buildings [10], [51], [68], [79], land use [38], [81] and point of interests [12].

Given the fact that this chapter is limited to road quality, only the researches related to the quality of the road network are discussed here. [39] is one of the first researches measuring the quality of OSM. He evaluated the completeness and positional accuracy of the two main types of the roads by comparison to the Ordnance Survey database. He concluded that the average positional accuracy of OSM roads in England in 2010 was about 6m, which he called acceptable [39]. [65] extended the research of Haklay by evaluating other measures of quality, such as attribute accuracy and temporal accuracy. They discovered that the number of OSM features in each area increases in relation to the number of contributors in that area [65]. [63] used a photogrammetric approach for calculating the real position of the roads. Then, they used this position to evaluate the positional accuracy of the roads [63].

[52] proposed a method for matching the linear features of OSM with the corresponding features of the reference database. His method uses both geometric and descriptive information for matching [52]. In addition, he evaluated positional accuracy, attribute accuracy, and completeness of the OSM road network [52]. The semantic accuracy of roads has been evaluated by [51] and [65]. Lineage of the OSM roads, which provides information about the history of the changes of the feature, is evaluated by [5]. The researches show that the OSM road data is almost complete in urban areas, and it can be used in many applications [70].

[51] tried to find out whether or not it is possible to update the national databases using OSM data. He assessed completeness, positional accuracy, geometric accuracy, and semantic accuracy of the OSM database in South Africa [51]. He argued that OSM data does not fit for this purpose because it does not comply with the standards of the national mapping organization [51]. [23] evaluated the quality of OSM data in the Ottawa-Gatineau area. He observed that the OSM road network is even more complete than the reference database. In addition to the measures evaluated by previous researches, [23] evaluated temporal accuracy. He realized that by 2018 there were 0.5 users per square kilometer of the study area [23]. [5] evaluated completeness, attribute, and positional accuracy and lineage of the motorways of the roads of Canada. He realized that the quality of OSM roads is not heterogeneous across the country, and he related this heterogeneity to contribution inequality [5].
Quality Indicators

As mentioned in the previous parts, the main method for evaluating the quality of OSM data is the method that compares it with reference data. However, the reference data is not available in all the regions of the Earth, or it may be pricy or under licenses that restrict its use in the quality evaluation process [10]. Therefore, in the regions where there is no reference data, we cannot provide precise information about the quality using the traditional methods. In order to tackle this problem, a number of researches suggested the use of quality indicators. These indicators are not precise, but they can provide some information about the quality in the regions where there is no other way to describe the quality [10].

[8] categorized these indicators into three groups: demographic, socio-economic, and indicators that are related to the behavior of the contributors. Regarding the third category, [16] believes that the data produced by expert users will have a better quality. Thus, by modeling the behavior of those users, the quality of the VGI data can be assessed [16]. [82] proposed “trust” as an indicator of the quality. They argued that the behavior of users about feature versions, the number of users worked on the same object, confirmation, tag correction, and rollbacks can be used to measure trust. They found that there is a positive correlation between trust and the overall quality of OSM data [82]. [83] analyzed the relation of demographics and the quality of point features of OSM [83]. [84] proposed a number of intrinsic indicators to evaluate the quality of OSM only based on the history of the data.

[42] evaluated the relation between the quality of the data and the number of contributors who participated in that region. [85] realized that the OSM database is more complete in the areas with more population, this finding was confirmed later in a research in Brazil [9]. In addition, [85] realized that as the distance from the center of the cities increases the completeness decreases and OSM is more complete in the city centers. [65] argued that in France, the completeness of OSM becomes problematic in rural areas, while in cities it is more complete. [86] realized that income and population has a positive correlation with the number of the contributors, and consequently can affect the quality. [10] applied a quantitative method to find out the correlation between the density of OSM data in a region and its completeness. They analyzed three case studies from the United States, New Zealand, and China and realized that there is a linear positive relationship between the completeness of buildings and their density [10].

Even though a number of researches proved a relation between some indicators and quality measures, no research evaluated them all together. For example, no research tried to find out the relationship between attribute accuracy and density of the data or income. Therefore, in this research, the correlation is measured between seven parameters related to three quality measures including completeness, positional accuracy, and attribute accuracy and five quality indicators including population, income, density of the OSM roads, density of OSM
buildings and the number of POIs in each region. The first result of this study is knowledge about the quality of the OSM road network in Québec Province. The second result will be some knowledge about the role that each indicator plays in describing the quality.

Materials and Methods

In this research, first of all, a literature review is done to find out the measures that previous researches used to evaluate different elements of the geographic data quality, specifically in the case of OSM. Then, these methods are used to evaluate the quality of the road network in the OSM database in Québec Province. Due to the limited access to data, only three quality elements are discussed.

Evaluating Completeness

Completeness is one of the most important elements of quality. It indicates the presence or absence of real-world features and their attributes in the database [7]. The ISO standard mentions that completeness consists of two types of data quality elements: omission and commission [7]. Omission refers to data absence from the database, while the commission refers to the presence of extra data in the database [7]. In a number of researches, completeness consists of two parts: data completeness and model completeness [36]. In this research, only the data completeness is evaluated.

[5] categorized the methods proposed by previous researches into two groups including object-based methods and unit-based methods. Object-based methods first find the corresponding objects in the two datasets. Then, they calculate the percentage of the objects that do not exist in the OSM database. In the case of roads and other linear objects, the matching process can be complicated and time-consuming. In addition, the roads of OSM are digitized from aerial images. A segment in the reference database may equal to more than one segment in OSM or vice versa. Therefore, the segment matching algorithms may not be the best way to evaluate road completeness. A number of previous researches such as [52] used object-based models for OSM completeness assessment. However, the majority of researches used unit-based methods [5], [23], [39], [51], [65]. Unit-based methods compare the total length of the roads in the OSM to the total length of roads in the reference data set. The unit-based completeness is calculated as:

\[
Completeness = \frac{\sum \text{OSM Roads Lengths}}{\sum \text{Reference Roads Lengths}} \times 100
\]

(2.1)

The unit-based method is not sensitive to digitizing issues and does not need object matching. Therefore, in this research, this method is applied.
Evaluating Positional Accuracy

Based on the ISO standard, positional accuracy is defined as the degree to which the position of a feature is accurately defined with respect to a spatial reference system [7]. Positional accuracy has two main elements including absolute and relative positional accuracy. Absolute positional accuracy refers to the closeness of the reported coordinates to the real ones [7]. Relative positional accuracy indicates how well the position of features is mapped with respect to other features of the map [7]. The positional accuracy of point features can be calculated using the Euclidean distance between the corresponding points [36]. In the case of OSM, a number of researches applied the Euclidean distance method for evaluating the positional accuracy of point features [65], [83], [87].

Evaluating the positional accuracy of linear objects is not as simple as point features and more than one method is used in the previous researches. [88] analyzed the methods that have been used for evaluating the positional accuracy of linear features and mentioned average distance, epsilon band, Hausdorff distance, and increasing buffer method as the most frequent methods used so far. [89] proposed the average distance between the two lines as a measure of quality. The average distance between two lines can be calculated as:

\[
Average \ Distance = \frac{S}{\frac{L_1 + L_2}{2}}
\]

(2-2)

where S is the area between the two lines and L_1 and L_2 are the length of the two lines (see Figure 2-1).

Another measure for evaluating the positional accuracy of a line is Hausdorff distance. Hausdorff distance is the greatest shortest distance between the lines [88]. In fact, it calculates the distance from any possible point in the first line to the second line and it selects the largest value as the Hausdorff distance. The direct Hausdorff distance is calculated as [88]:

![Figure 2-1. average distance between the two lines (Source: [90])](image-url)
\[d(L_1, L_2) = \max_{x \in L_1} \left(\min_{y \in L_2} \|x \rightarrow y\| \right) \]

(2.3)

where \(\|x \rightarrow y\|\) is the distance between point \(x\) and point \(y\). \(d(L_1, L_2)\) is the direct Hausdorff distance from line 1 to line 2 (see Figure 2-2).

Figure 2-2. Hausdorff distance between two lines (inspired from: [90])

In order to have the Hausdorff distance, the direct Hausdorff distance should be calculated in both directions [88]. Hence, the Hausdorff distance is calculated as [88]:

\[
\text{Hausdorff Distance}(L_1, L_2) = \max(d(L_1, L_2), d(L_2, L_1))
\]

(2.4)

[52] argues that this method can be time-consuming when using big data sets. In addition, [52] argues that the method may not work well when the two databases do not have the same feature density.

In 1997, [64] proposed a method for evaluating the positional accuracy of linear features in two databases. They first proposed this method for positional accuracy evaluation of the digitized maps [64]. However, very soon this method became popular in OSM quality assessment. One possible reason can be the fact that one of the data production ways in OSM is digitizing the aerial imageries. In this method, a feature in low accuracy data set is compared to its equivalent feature in the high accuracy data set. The positional accuracy is measured by calculating the percentage of the low accuracy feature that is within a certain distance of the high accuracy feature [64]. Figure 2-3 indicates how this method works.
In this method, a buffer of distance x is created around the feature in the reference database. Then, the second feature is evaluated to find out how many percent of it is within the buffer. Thus, the increasing buffer distance can be calculated as\[88\]:

\[
IBM\,\text{Percentage}_x = \frac{L_{L_1} \cap \text{Buffer}(L_2, x)}{L_{L_1}} \tag{2.5}
\]

where L_{L_1} indicates the length of L_1 and $L_{L_1} \cap \text{Buffer}(L_2, x)$ indicates the length of L_1 that is within the distance of x of the second line\[88\]. In this method, usually, the objective is to find out the distance x that is corresponding to a given percentage. For example, the objective can be finding the buffer distance (x), that 80% of the length of OSM roads are inside that buffer. The superiority of this method over previous ones is that feature matching is not required, and consequently, the method has far less computational complexity than others.\[52\] argues that IBM seems appropriate for VGI because it is not sensitive to outliers and it is statistically based. In the current research, we selected the IBM method because of the above-mentioned reasons.

In addition,\[91\] proposed another method based on two buffers. They argued that one buffer method can neglect the fact that some lines can be missing from the data sets\[91\]. Therefore,\[91\] proposed to create a buffer around the reference data set and another buffer around the check data set. Then, each buffer will have an area that can be shown by Buffer(L_1) and Buffer(L_2)\[91\].
Four types of areas can be used to evaluate the positional accuracy of the lines [88], [91]:

\[
\text{Area1}: \quad \text{Buffer}(L_1) \cap \text{Buffer}(L_2) \tag{2.6}
\]

Area1 indicates the area that is inside both buffers.

\[
\text{Area2}: \quad \overline{\text{Buffer}(L_1)} \cap \text{Buffer}(L_2) \tag{2.7}
\]

Area2 indicates the area that is outside the buffer of line1 and inside the buffer of line 2.

\[
\text{Area3}: \quad \text{Buffer}(L_1) \cap \overline{\text{Buffer}(L_2)} \tag{2.8}
\]

Area3 is the area that is inside the buffer of line and outside the buffer of the second line.

\[
\text{Area4}: \quad \overline{\text{Buffer}(L_1)} \cap \overline{\text{Buffer}(L_2)} \tag{2.9}
\]

Area 4 indicates the area that is outside both buffers. [91] argues that the more the two lines are similar the more area 1 will increase and the more the two lines are different, the areas 2 and 3 will increase and area 1 will decreases. Area 4 is not used in the method. Given that in the case of OSM it is possible to have some missing lines, this method is used to make sure that our evaluation of OSM quality is robust.

Evaluating Attribute Accuracy

The ISO standard defines thematic accuracy as “the accuracy of quantitative attributes and the correctness of non-qualitative attributes and the correctness of the classifications of features” [7]. In fact, the attributes describe the characteristics of the objects in the real world. The accuracy of those attributes indicates how well an object is modeled in the database [36]. There are four different measurement scales for attributes in GIS including: nominal, ordinal, interval, and ratio [52], [92]. There are different methods for evaluating the accuracy of variables related to each type. One of the most important attributes of the road network is the name of the road because it plays a key role in finding the addresses. Thus, in a number of researches, the accuracy of street names has been evaluated [5], [52], [55], [60]. Road names are nominal variables which means that their accuracy cannot be evaluated using the same methods that numeric variables are evaluated [36], [52] used PHP’s “similar_text"
function for comparing how many letters are similar between two strings (road names). [5] used Levenshtein distance to find out the attribute accuracy in the case of OSM roads.

Levenshtein distance is a measure that indicates how similar two strings are [5]. Levenshtein distance between two strings is the number of insertions, deletions, and replacements that are necessary to change one string to the other one [93]. The Levenshtein distance is an integer number and it facilitates the statistical analysis in the second part of the research. Therefore, this measure is used to compare the names of the streets in the OSM to the names of the streets in the reference database. If the two names are the same, the Levenshtein distance will be zero [93]. The maximum amount of this measure is equal to the length of the longer string [93]. This measure is useful to find human errors in writing the street names in the OSM database because human errors are mostly misspelling.

Evaluating the Quality of OSM

Study Area

The province of Québec is located in the east of Canada. It is the second largest province of Canada by area (1,542,056 km²) and it has a population of more than 8 million [94]. The first language of the majority of the people in this province is French. The majority of the population and consequently the majority of the infrastructures and roads are located in the southern part of the province near the border with the United States. Montreal, Québec city, and Gatineau are the largest metropolitan areas of the province [94]. The economy of Québec, which represents 20.36% of the economy of Canada, is ranked 37th in the world [94].

Data

For the purpose of this research, the road network of OSM was compared to a reference database of Québec. The road network from “Données Québec” is used as the reference data. It has been downloaded on 4 November 2018 from the following website: (https://www.donneesQuebec.ca/recherche/fr/dataset/adresses-Québec). The road database available in Données Québec is supplied by Addresses Québec (http://adressesQuebec.gouv.qc.ca). The data of OSM can be downloaded from different sources. Geofabrik.de provides both full history dump files and OSM data extracts. In this section of the research, we do not need the full history file. Thus, the OSM data extracts for Québec are downloaded on 4 November 2018 from (http://download.geofabrik.de/north-america/canada.html). Figure 2-5 illustrates the two databases.
Each of the databases contained the road types that did not exist in the other database. For example, OSM contained pedestrian roads but this type of the roads does not exist at all in the database of “Données Québec”. Therefore, in order to have a reasonable comparison, the types of roads that did not exist in one database were removed from the other one. All the features with the types “cycleway”, “footway”, “pedestrian” and “step” were removed from the OSM dataset and the features with the type “maritime connection” were removed from the reference dataset. After removing the outliers, the two data sets were projected to “NAD_1983_MTQ_Lambert” to facilitate the comparison.
Figure 2-6 shows the OSM data and reference data of the campus of Laval University before preprocessing. The OSM data set contains more roads of the campus in comparison to the reference data set. It is mostly because of the pedestrian roads that exist in the OSM database but does not exist in the reference database. It proves the importance of preprocessing the data before calculating the measures of quality.

Completeness

As discussed in the previous section, there are two main methods for evaluating the completeness including unit-based and object-based methods. Object-based methods are based on object matching between the two databases which requires a complex inaccurate process [52]. Thus, in this research, the unit-based method is applied. Comparing the total length of roads in OSM to the total length of roads in the “Données Québec"
database shows the completeness of the OSM. The total length of the roads in reference database after preprocessing is 614,846,932.32 m, while the total length of OSM roads is 202,376,172.88 m. Thus, using equation (2-1), the completeness of OSM roads in the province of Québec is 32.91%. Given that the quality pattern of OSM is heterogeneous [96], there may be areas in the case study with more or less completeness than 32%. Figure 2-7 illustrates the difference in completeness in a random place outside of the urban areas and the area of the old Québec City (Vieux-Québec).

Figure 2-7. The completeness of OSM road network. 1- Left: Old Québec 2- Right: outside urban areas

Figure 2-7 shows that OSM is almost complete in the historic part of the Québec City, while outside urban areas the completeness is not considerable. In order to have a better insight into the completeness of OSM data in each part of the province, we used a 1km*1km grid. The completeness is calculated for each grid using Equation (2-1). The OSM roads and reference roads were both clipped with the grid layer and a completeness was calculated for each grid. Figure 2-8 illustrates the completeness of OSM for the province of Québec. The figure shows that the completeness in urban areas is better than in other parts of the province. In addition, the southern part of the province has more population than the northern part. Figure 2-8 shows that the southern part of the province is more complete than the northern parts. This finding is in line with the findings of [9] who discovered OSM is more complete in urban areas where there is more population.
Figure 2-8 illustrates that the completeness of the road network is higher near the big cities such as Montreal and Québec City than other parts of the province. “Geometrical interval” were used for classification in order to distinguish between the high values of completeness because there are many segments with completeness of higher than 95%. The completeness of OSM for the Island of Montreal and for Québec City is 99.82% and 99.53%, respectively. It means that for a wide range of applications the road network of OSM can be a reliable source of data.

Positional Accuracy
In this research, two methods have been used to evaluate the positional accuracy of OSM roads: 1) Increasing Buffer Method and 2) Double Buffer Method. For both methods, first, the preprocessing is done the same as the previous section because, in both IBM and DBM (double buffer method), the similar databases should be
compared. Thus, the pedestrian ways and others that do not exist in the reference database were removed from the OSM database.

Increasing Buffer Method

IBM method is calculated using Equation (2-5). The main objective of IBM is to find out how distance from reference roads affects the percentage of OSM roads that are within that distance. Figure 2-9 illustrates an example of the increasing buffer method. In this example, the buffer distance is 2 m, green color shows the part of the OSM roads that are within the buffer, and red shows the part of OSM roads that is outside the buffer. Increasing buffer method uses the length of the green part in the calculations.

![Increasing Buffer Method](image)

Figure 2-9. An example of increasing buffer method for the distance of 2 m

A set of buffers were created around the reference roads from 10 cm to 20 m. The buffer distance for more than 20 m was not necessary because after 10 m there is no considerable difference in the percentage of OSM roads that are inside the buffer. Then, the OSM roads were clipped with the buffers to find the segments that falls within the buffer. In the next step, the length of the segments inside the buffers were calculated. Finally, the length of each segment that was totally inside the buffer is divided by the total length of the road. Figure 2-10 shows what percentage of the OSM roads are within each buffer.
Figure 2-10 illustrates that the changes in the percentage of OSM roads inside the buffer changes dramatically when the buffer distance is between 0 and 5 m. For buffer distances greater than 5m there is a marginal change in the percentage of OSM roads inside the buffer. When the buffer distance is greater than 8m, almost there is no change. Hence, it can be concluded that the majority of OSM roads (almost 80%) are within the distance of 8 m from “Données Québec” roads. This positional accuracy can be considered sufficient for a wide range of applications. However, each user should decide if this accuracy is enough for her/his specific application.

In order to better understand the positional accuracy of roads in the Québec province, we analyzed the positional accuracy of each type of road in the OSM database using the increasing buffer method. Given that IBM does not find corresponding features, it is assumed that each type of road is compared to the same type in the reference database. Figure 2-11 illustrates the percentage of each type of road that is within 5 m of reference roads. The buffer is created at the distance of 5 m because Figure 2-11 shows that 5 m is a turning point for positional accuracy. Then, the calculations are done for each type of roads separately.
Figure 2-11 shows that almost the majority of road types have an accuracy better than 60% except “unknown”, “track_grade5”, “track_grade4”, “track_grade3” and “path”. Among these types, only “path” has a considerable total length in the OSM database (7,999,418.99 m). In fact, the type of road is the values associated with the key “highway”. There is a full list of available values for OSM road types on OpenStreetMap wiki webpage (https://wiki.openstreetmap.org/wiki/Key:highway). Based on this webpage, “path” is any non-specific path that can be located mainly outside of the cities and it can justify why the positional accuracy of “path” is not as good as the other types. In addition, Figure 2-11 illustrates that “motorway”, “motorway_link”, “primary” and “trunk_link” have the highest positional accuracy.

In the next step, in order to better evaluate the positional accuracy of the OSM road network, the positional accuracy was calculated for each grid cell. Similar to the previous section, a grid of 1km*1km was used to evaluate OSM positional accuracy. Then, IBM was applied for each grid and the result was unified to make a map of the positional accuracy of the province.
Figure 2-12 illustrates the positional accuracy of OSM roads in the province of Québec. Three buffer distances were used: 1m, 2m, and 5m. According to 1m buffer, most parts of the province have a low accuracy and almost
there is no clear pattern in the accuracy. The accuracy results of 2m buffer shows that the parts that are close to Montréal have a better accuracy than other parts. Finally, when 5m buffer is used, positional accuracy is acceptable for the most part of the province. Moreover, it can be concluded that in lower buffer distances, there is no pattern in the accuracy results but for greater buffer distances, better accuracy is obtained near the big cities. Therefore, it can be concluded that errors in lower buffer distances do not follow a pattern. In order to better evaluate this hypothesis, statistical methods should be applied. However, one possible explanation is that the accuracy of the aerial imagery in OSM is ±4m, and digitizing the aerial imagery cannot have a better result for low buffer distances.

Double buffer method

In this section, a double buffer method was applied to compare the results with the results of increasing buffer method. The double buffer method is more robust in comparison to IBM because the double buffer method is less affected by sudden changes. Figure 2-13 illustrates how the double buffer method works.

![Double buffer method example](image)
1 m buffer was created around both reference roads and OSM roads. Then, the intersection of these two buffers was calculated. The green color illustrates the polygons that are created by intersecting the two buffers. The area of the intersection is area 1 of DBM. According to DBM, the measure of positional accuracy can be calculated as follows:

$$\text{Positional Accuracy}_{DBM} = \frac{2 \times \text{Area}_1}{\text{Area} (\text{Buffer}(L_1)) + \text{Area} (\text{Buffer}(L_2))} \times 100$$ \hspace{1cm} (2-10)

If the two lines are exactly equal, then the area 1 will be equal to \text{Area} (\text{Buffer}(L_1)) and \text{Area} (\text{Buffer}(L_2)). Thus, the DBM will be 1. If the two lines are completely different, then the measure will be 0 because area1 will be 0. Equation (2-10) is calculated for the province of Québec using 1m buffer around both sets of roads. This result should be compared to the result of increasing buffer method when the buffer distance is 2m because in DBM two buffers of 1m are used at the same time.

Figure 2-14. Positional accuracy of the OSM roads calculated by double buffer method using 1m buffers
Figure 2-14 shows the positional accuracy of OSM roads that was evaluated using double buffer method. Buffers of 1 m were created around OSM and reference roads. Then, the measure of positional accuracy of the double buffer method was calculated. Finally, this measure was calculated for each grid. In addition, Figure 2-14 illustrates the positional accuracy of OSM roads around the city of Montreal.

Attribute Accuracy

As it is mentioned earlier, in this section only the name accuracy for the streets will be evaluated. Name is a nominal variable and basically, it is a string. One of the methods that can efficiently compare two strings is Levenshtein distance. Levenshtein distance is the minimum number of deletes, inserts, and substitutions that are required to change one string to the other one. Therefore, it can be between 0 and the length of the longer string. In this section, Levenshtein distance is calculated between the road name in OSM and its corresponding name in the reference database. The accurate names of the roads will result in the accurate geocoding and is necessary for many applications that work with addresses. The errors in road names are mainly due to typo errors, unfamiliarity of the contributor with the environment, and more rarely to vandalism. Table 2-1 shows some common errors that exist in the OSM database in Québec province.

<table>
<thead>
<tr>
<th>id</th>
<th>Name of Road in OSM</th>
<th>Name in the Reference database</th>
<th>Levenshtein Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Boulevard Joliet</td>
<td>Boulevard Jolliet</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Rue De La Verendrye</td>
<td>Rue De La Vérendrye</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Rue Nérée Duplessis</td>
<td>Rue Nérée-Duplessis</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Rue De La noë</td>
<td>Rue Delanoë</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Rue Jacques-Cartier</td>
<td>Route Jacques-Cartier</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Chemin Gérard-Vigneau</td>
<td>Chemin Gérard-Vigneault</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Chemin St.Germain</td>
<td>Chemin Saint-Germain</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>Rang du Pin-Rouge North</td>
<td>Rang du Pin-Rouge Sud</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>Rue Gauthier</td>
<td>Rue Jean-Gauthier</td>
<td>5</td>
</tr>
</tbody>
</table>
The errors that we found in the road names are usually one of the following cases:

- Errors that are related to French accents.
- Typographic errors
- Errors that are related to the abbreviation of names
- Errors related to suffixes and prefixes like north and south
- Errors when the name is totally different

Usually, Levenshtein distances lower than 2 are related to typographic errors and French accents. The Levenshtein distances greater than 5 are related to the cases that the name is totally wrong. Levenshtein distances between 2 to 5 are related to suffixes and abbreviations.

Figure 2-15. Value of Levenshtein distance for the whole province of Québec

Figure 2-15 shows the attribute accuracy of Québec roads. Most of the names of the roads are correct in the OSM database (87.6%). It means that the name of 87.6% of the roads was exactly the same in both databases which is a good quality for many applications. 5.9% of the OSM roads’ names have 6 or more letters different from the name in the reference database. In this research, we observed that more than 6 different letters means that the road name is likely totally wrong in the OSM database. 4.2% of the roads’ names have 1 or 2 letters different from the reference database. Our observations show that 1 or 2 letters difference is mostly because of French accents or typo errors. Therefore, almost 4% of the names have issues related to French accents or typo errors. The issue of French accent is especially important for the province of Québec and in other parts of...
Canada it may not be important since the first language is English. These observations are not a general rule and they are only related to this case study.

In order to better evaluate the attribute accuracy of roads, a grid of 1km*1km was used. The Levenshtein distance between the road name in OSM and in the reference database was calculated in each grid. In each grid, an average value of the Levenshtein distance is calculated. Figure 2-16 illustrates the spatial distribution of the errors in the province. In order to better illustrate the distribution, the Levenshtein distance of 0 was eliminated from the map. The results show that there was a higher attribute accuracy near Québec City and Montreal. Therefore, it can be hypothesized that the OSM map is more qualified in the places that there is more population. In order to better visualize the errors, in the left figure, the roads with exactly the same name (Levenshtein distance = 0) are not displayed.

Figure 2-16 shows the map of Levenshtein distance for Québec city and its surrounding. The majority of the cells in Québec City are green which means that the average Levenshtein distance of the OSM roads’ names is 0 or 1. It means that the name of the road in the OSM database has 1 or 2 letters different from the name of the road in the reference database. In the next section, a statistical method will be used to make sure whether OSM has more quality in the populated areas or not.
Statistical Analysis

As discussed in section 2.4, if a variable has a significant correlation with a quality measure, then that variable can be used as an indicator for that quality measure. The quality indicators can provide an insight into the quality measures when it is not possible to calculate quality measures directly. In this section, statistical analysis is applied to determine if there is a correlation between the three quality measures and the five variables including the population in each region, the average income in each region, the density of OSM buildings in each region, the density of OSM roads in each region, and the number of POIs in each region. Due to limited access to current data, only these five variables are selected and evaluated in this research. These five variables are extracted from the literature review. Each of these five variables are mentioned at least in one of the previous researches (see section 2.4). However, to our best knowledge, no research carried out a complete analysis to evaluate the correlation between these variables and the three quality measures (completeness, positional accuracy, and attribute accuracy). For example, [10] proved that there is a positive correlation between completeness and the density of OSM data, but, to our best knowledge, no research evaluated the correlation between the density of
OSM data and positional accuracy or attribute accuracy. Thus, in this research, a complete statistical analysis is done to find out which variable can be used as an indicator for which quality measure. In addition, the result of this section determines which variable has the strongest and which one has the weakest correlation with each quality measure.

Calculating the correlation between quality measures and quality indicators

The correlation coefficient is a statistical measure that shows how the change of one variable can affect the other one. For example, it can tell us whether the completeness of OSM database increases in the areas where there is more population. Pearson correlation coefficient can detect a linear relationship between two variables. However, nonlinear relations are not detected by Pearson. Spearman’s rank correlation coefficient can detect all kind of monotonic relationships. Monotonic relationship is more general than linear relation and includes all relations where the increase of one variable increases the other one. Hence, here in this paper, Spearman’s rank correlation coefficient is used to calculate the correlation between the five variables and quality measures.

To achieve this goal, the study area is intersected with a grid of 1km*1km. Then, the five variables and the three quality measures are calculated for each grid cell. Each grid cell is considered as a data sample for calculating the Spearman’s rank correlation coefficient.

<table>
<thead>
<tr>
<th>Category</th>
<th>Potential Quality Indicators</th>
<th>Completeness</th>
<th>Positional Accuracy</th>
<th>Attribute Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Population</td>
<td>1</td>
<td>0 • 684</td>
<td>0 • 480</td>
</tr>
<tr>
<td></td>
<td>Income</td>
<td>*</td>
<td>1 • 427</td>
<td>0 • 265</td>
</tr>
<tr>
<td></td>
<td>OSM Roads Den.</td>
<td>*</td>
<td>* • 1</td>
<td>0 • 324</td>
</tr>
<tr>
<td></td>
<td>OSM Build. Den.</td>
<td>*</td>
<td>* • *</td>
<td>1 • 432</td>
</tr>
</tbody>
</table>

Table 2.2. Correlation coefficient between quality measures and potential quality indicators
Table 2.2 shows the correlation between the five variables and quality measures. The five variables are: population, income, density of roads, density of buildings and number of POIs in each grid. The quality measures are: completeness, positional accuracy (increasing buffer method IBM at buffer distance of 1m and 5m), positional accuracy calculated by double buffer method at the buffer of 2 m and attribute accuracy (comparing the names of the streets using Levenshtein distance). In addition, this table shows the correlation between quality measures. It helps us to understand whether a quality measure can be used as an indicator for the other quality measures.

The results show that completeness has a positive correlation with all 5 variables. Completeness has the strongest correlation with the density of OSM roads in each grid (0.95) which means that the density of OSM roads is a very powerful indicator of completeness. The next powerful correlations exist between completeness and population and income (almost 50%). The results demonstrate that the completeness of OSM roads increases with the increase of the number of POIs, but the correlation is not as strong as the one of previous indicators.

In the case of positional accuracy, the correlation is positive, but it is not as strong as completeness. In addition, IBM 5 m has a stronger correlation with quality indicators than IBM 1 m. One possible explanation is that the areal images are not considered to have a quality better than 4 m. Thus, when the buffer of 1 m is selected, the behavior of positional accuracy is more random than when the buffer of 5 m is selected. Moreover, positional accuracy has the strongest correlation with population and income.

Statistical hypothesis testing
The correlation between quality measures and quality indicators is calculated in the previous section. However, these correlation values are not sufficient to accept or reject a positive association (relationship) between the
quality measures and quality indicators. In this research, statistical hypothesis testing is used to determine whether a significant positive association exists between the quality measures and quality indicators. The H_0 and H_1 hypotheses are as follows:

- H_0: There is no significant positive association between the quality measures and quality indicators (variables of Table 2-2).
- H_1: There is a significant positive association between the quality measures and the quality indicators.

This test is a one-tail test and the number of pairs is 363,111 (which is the number of grid cells in all cities). Therefore, the critical value of Spearman’s correlation test is $\rho_c = 0.003$ at the significance level of 0.05. It means that any correlation greater than 0.003 rejects the null hypothesis and proves a positive association between the two variables. Table 2-3 shows the results of statistical test for the variables of Table 2-2. The letter Y means that a positive association is accepted, while letter N means that the positive association is not accepted.

<table>
<thead>
<tr>
<th>Category</th>
<th>Potential Quality Indicators</th>
<th>Complet.</th>
<th>Positional Accuracy</th>
<th>Attribute Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>Population</td>
<td>Income</td>
<td>OSM Roads Density</td>
<td>OSM Buildings Density</td>
</tr>
<tr>
<td>Population</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Income</td>
<td>*</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSM Roads Den.</td>
<td>*</td>
<td>*</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSM Build. Den.</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>Y</td>
</tr>
<tr>
<td>Number of POIs</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Completeness</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IBM 1m</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
Table 2-3 shows that a positive association at the significance level of 0.05 is proved between all pairs of variables except 2 of them. The test rejected the positive association between the attribute accuracy of OSM roads and the density of OSM roads in our study area. In addition, the test rejected the positive association between the attribute accuracy of OSM roads and the density of POIs in each grid cell in our study area. The value of Levenshtein Distance increases by the decrease of attribute accuracy and vice versa. Thus, the test for attribute accuracy is a left-tailed test.

Statistical hypothesis testing allows evaluating the significance of a correlation in a statistical analysis.

In the case of attribute accuracy, high values of Levenshtein distance indicate lower accuracy and in the contrary, low values of Levenshtein distance indicate high attribute accuracy. Therefore, a negative correlation between Levenshtein distance and quality indicators shows a positive correlation between attribute accuracy and the indicators. The results demonstrate that Levenshtein distance does not have any strong correlation. The strongest correlation is between Levenshtein distance and completeness (-0.26) which means that where the map is more complete, attribute accuracy is higher. The values of correlation for Levenshtein distance are generally negative which means that there is a weak positive correlation between attribute accuracy and quality indicators.

Conclusion

The results of this research show that the OSM road network is 32.91% complete in the province of Québec. In urban areas, OSM is even more complete than the reference database because OSM contains pedestrian roads. Thus, OSM is almost complete in urban areas.

The results of positional accuracy evaluation show that the percentage of roads that fall in the vicinity of the reference roads increases dramatically when the buffer size increases to 5m and then it grows gradually till the buffer size of 8m and after 8m there is no considerable change in the positional accuracy. Approximately, 70% of the roads of the province has a positional accuracy better than 5m. In addition, there is no noticeable difference between the positional accuracy of the different types of roads. Thus, in the province of Québec, the type of the
Road is not an indicator of the positional accuracy. When 5m or greater buffers are used, the roads near cities have a better positional accuracy, while with the buffers smaller than 5m there is no pattern in the accuracy.

Attribute accuracy shows that the name of 87.6% of the OSM roads is exactly the same as their name in the reference database. 3.2% of the roads have only 1 letter different and 1% of the roads have two letters different from the name in the reference database. One of the most frequent errors of attribute accuracy is related to the French accent. Suffixes and prefixes are also a serious problem. For 5.9% of the roads, there are 6 or more different letters in the name.

The statistical analysis shows that population, income, and OSM road density have a positive correlation with quality measures. It means that they can be used as quality indicators for the areas where there is no information about the quality of OSM. Among the three quality indicators, the population has the strongest correlation with quality measures. The correlation between quality indicators and completeness is greater than the correlation between quality indicators and attribute accuracy. It means that they are stronger indicators for completeness than for attribute accuracy.
Chapter 3 Evaluating the Quality of OSM Buildings

Introduction

The term VGI was introduced by Goodchild to describe the process of geographic data production by general public [3]. This term also refers to the fact that VGI data are acquired voluntarily by the crowds of people. VGI can cover a wide range of data including personal trajectories, geotagged photos, and the voluntarily digitized elements of online maps [25]. VGI can be categorized into three groups based on the data content including text-based VGI, image-based VGI, and map-based VGI [22]. Text-based VGI can be a georeferenced tweet, while image-based can be a geotagged photo. A map-based VGI can be created by online communities where the contributors can edit, create, and delete the features on a web map. In fact, map-based VGI is a geographically-explicit kind of VGI where the contributors explicitly contribute to the production of geographic contents [5].

A good example of a web-based VGI is OpenStreetMap. OpenStreetMap was created by Steve Coast and is a free, open editable map of the world [45]. OSM allows contributors to edit, create, and delete the content of the map of the world. A number of researches reveal the fact that the majority of the contributions to OSM are not uniform. This implies that there are places with huge contributions whereas other places have very few contributions [6], [98]. OSM contributors have already created a nearly complete map of the world in many parts such as Europe and North America [5], [23]. OSM contributors mainly digitize roads, buildings, and land use data. The contributors can edit the map in their own neighborhood or in any other area of the map. For instance, when the Haiti Earthquake happened in 2010, the contributors of OSM tried to digitize a map of Haiti which helped NGOs to provide their help for the local people [52].

The availability of the almost freely accessible OSM data can encourage the development of many applications that were not possible before due to the lack of access to geographical data [85]. The license of OSM allows sharing, using, and reproduction of the data even for commercial purposes as far as the contributors of OSM are credited [48]. The data of OSM is downloadable from http://www.geofabrik.de/. This website provides the data for different countries of the world. In addition, the full history of the OSM database is available and it allows the researchers to track all changes to the database [99].

The geographic data in OSM can be stored in three different forms including nodes, ways, and relations [5], [45]. The nodes represent point features, while ways represent the linear objects. The attribute data in OSM are stored as tags. OSM allows the contributors to use tags to describe features which is both a strength and a weakness of the project. Tags are in the form of “key=value” pairs [5], [45]. For instance, a building can be stored
using a “building=yes” tag. The name of the building can be stored in the form of “name=Casault”. A number of
tags are widely accepted by the community and there is a consensus about them, while some other tags are
chosen by a contributor and are not accepted by others.

For OSM, the majority of contributions done by only a few of the contributors. A rule of thumb explains that only
1% of the contributors produce the majority of the data and 9% of them contribute on a regular basis, while 90%
of the contributors of OSM just contribute once or a few times and then withdraw from the project [48]. There is
no requirement for becoming a contributor to the project. In addition, many of the contributors do not have any
geographic knowledge and are not necessarily familiar with spatial data collection rules and procedures [10].
Therefore, there is no guarantee about the quality of OSM data and hence, it is necessary to assess the quality
of the data before using it in any application.

A variety of researches have been done in order to evaluate the quality of OSM data in different regions of the
world [10], [46], [59], [68], [81], [85]. One of the first evaluations of the quality of OSM buildings is done by [68].
They used a turning function approach to measure the shape accuracy. Another research [67] evaluated how
the quality of OSM database changes over time. [4] proposed a new method based on coordinate transformation
for finding the equivalent edges and vertices of features in OSM and a reference database. [23] evaluated the
quality of OSM building footprints data in the city of Ottawa. Another research evaluated the quality of OSM
building data in Taiwan [100]. Some researchers tried to find out the relation between the quality of the OSM
building data and indicators such as the density of the building [10].

Considering the fact that the primary goal of OSM is to provide spatial data for the regions where the authoritative
data is not available, comparison to reference data in those regions is not possible [10]. To overcome this
problem, a number of researchers suggested the use of quality indicators such as population, the number of
contributors, and the average income of the region as indicators to describe the quality of OSM in those regions.

In this chapter, first of all, research is done to find out different quality measures that previous research works
have used to evaluate the quality of OSM buildings. Then these quality measures are classified for estimating
different aspects of quality such as completeness and positional accuracy. Then, the quality of OSM buildings
for 5 cities (Québec City, Longueuil, Repentigny, Rouyn-Noranda, and Shawinigan) in the province of Québec
is evaluated. In the last step, each measure of the quality is calculated for each grid of 1km*1km and then the
correlation between the potential quality indicators and the quality measures are calculated. This step helps us
to understand whether or not the measures of quality decrease or increase by these indicators.
Methodology

Feature Matching

Feature matching is a process that aims to find corresponding features between multiple databases [68]. In this method, first a level of tolerance is defined and then the similarity and dissimilarity between two features are measured. Then, based on the defined tolerance level, the two features are identified as corresponding or independent. Given that a geographic feature can be described by its geometry and a set of attributes, the similarity measures can be based on a comparison of lexical information, position of the feature, shape of the feature, or even attributes that describe the feature. Feature matching is considered as an essential step in data integration, data update, change detection, and data versioning [101].

Feature matching in OpenStreetMap is even more difficult than feature matching in authoritative databases because OSM data is heterogenous and there may be a high density of data in one neighborhood and a very low density in others. In addition, different OSM features do not have the same level of details [22]. It is because OSM does not force the contributors to use a unique way of data creation [53]. For example, contributors may digitize a very complex building footprint with only 4 points. In fact, usually, the building footprints in OSM are generalized in comparison to the real footprint [67]. Therefore, the buildings of an authoritative database may follow the same level of detail but in the case of OSM, the same level of detail cannot be expected due to polygon generalization. Overall, a comparison of attributes (tags) or geometry between an OSM feature and a reference feature is far more complicated than comparing two authoritative databases.

A number of researchers proposed models for feature matching in OpenStreetMap. [52] proposed a method for matching the OSM road network with a reference road network. The method can automatically find corresponding roads using a seven-step comparison algorithm [52]. The method computes geometrical and topological information of a line (such as distance and direction) as well as attributes of the line such as the name of the street [52]. However, [101] believes that this method is not very efficient because of the existence of topological inconsistencies in the OSM database.

Another feature matching method is proposed by [101]. This method uses a level of tolerance which is a buffer around the geometry and then the location of the second geometry in comparison to this buffer is evaluated. The second geometry can be within, partly within or completely outside of the buffer. The width of the buffer is considered as the maximum acceptable difference between the two geometries. The method also measures the similarity between lexical information of the two features. Usually, lexical information is stored in strings and this step of the algorithm actually compares two strings [101]. Even though this algorithm had an acceptable result in some regions, it seems to be computationally heavy. In addition, most of the buildings do not have a name.
Thus, comparing them by their names of other tags is not as efficient in buildings as it is in the case of road network matching.

Previous researches on OSM building quality mainly applied two methods for matching building footprints of OSM with a reference database. The first method, which is more common, is the area overlapping method introduced by [68]. This method is based on assumption that the polygon displacement between OSM and the reference database is not considerable [68]. Therefore, the area that the two polygons overlap can be used as a criterion for finding corresponding features [68]. The tolerance for feature matching is considered 30% of the area [68]. If the overlap area between the OSM and reference feature is less than 30%, the two features will not be considered corresponding because it is assumed that the overlap is caused by the spatial displacement of neighboring polygons. Then, if any two features in OSM and reference data has an overlap of more than 30%, they will be considered as corresponding features [68]. The following equation was proposed by [68] for finding corresponding building footprints:

\[
\frac{Area_{overlap}}{\min(\text{Area}(\text{Foot}_{osm,i}), \text{Area}(\text{foot}_{ref,j}))} > 30\%
\]

(3-1)

Most researchers who evaluated the quality of OSM building footprint data used this method [23], [73], [100], [102]. The tolerance of 30% is not a fixed value and some of the other researchers considered other values as tolerance. For example, [23] used a tolerance of 50% for the feature matching.

[67] proposed another method for feature matching, for calculation of completeness, which uses the centroid of the OSM polygons and compare them to the reference database. If the centroid of an OSM building footprint falls within a building footprint of the reference database, then the two polygons are corresponding [67]. [67] applied this method to evaluate object-based completeness of the OSM building footprints. A number of researchers applied centroid method for feature matching [23], [25], [51], [100].

Another method of feature matching was proposed by [79]. This method first calculates the centroid of the two datasets. Then, calculate the distance between the two sets of points. The nearest polygons will be considered as matching polygons. A tolerance of 20m is used in this method and only OSM polygons that their nearest reference polygon is nearer than 20m, are considered as a corresponding pair [79]. This method seems to be the simplest among the proposed methods. However, no research has been found to compare the quality of all these feature matching methods.
Correspondence types

The relationship between OSM features and reference features can be complicated. In particular, the relation between the building footprints is more complicated due to the errors that may happen during the data creating. For example, a block of 5 buildings can be represented by only one building on OSM because, in the aerial imagery, it is difficult to determine the exact border between the roofs. The other problem is that usually, the OSM polygon represents the roofs, not the footprints. Thus, it may have some displacements because the sensor may have an oblique view of the buildings [103]. Therefore, the OSM buildings may be a combination of reference buildings, a generalized representation of reference buildings, or a representation with a positional displacement or a combination of all of these issues. [68] argued that the relationship between OSM footprints and the footprints in the reference databases can be one of the following cases.

(OSM : reference):

- **1 : 1** – this relation exists when one OSM building is matched to only one reference building and that reference building also matches to only one OSM building. From the data quality point of view, this case is the only case where both datasets are complete.

- **1 : 0** – this case is when there is a building on OSM that has no corresponding polygon in the reference database. Based on ISO standard, this case is called data commission [7].

- **1 : n** – this case is when 1 OSM database is corresponding to more than 1 building in the reference database. This case is frequent in OSM because the border between the roof of adjacent buildings is not clear in aerial imagery and sometimes a block of buildings is represented by one polygon in OSM [101].

- **0 : 1** – this case happens when a building in the reference database has no matching polygon in the OSM database. ISO standard called it data omission [7].

- **n : 1** – this case means that more than one building in the OSM database are matching with only one building in the reference database. This case is also frequent in OSM because the difference in the elevation of the different parts of a single building may cause the digitizers to consider it as a number of separated buildings.

- **n : m** – this case means that a number of buildings in OSM are matching to a number of buildings in the reference database. Based on our case study this case is more common with very big buildings than with small residential ones.
Figure 3-1 illustrates some issues regarding OSM feature matching. In this figure, all polygons 1, 2, ..., 6 are moved towards the northwest in comparison to the reference polygons. Polygon 1 is smaller than the corresponding reference polygon. It is also a generalized representation of the reference polygon. The fact that OSM features are a generalized (simplified) representation of the reference ones is mentioned by [68]. Polygons 3, 4, 5, and 6 are corresponding to only one polygon in the reference database. This issue can be caused by the poor aerial images or the difference in the elevation of different parts of the roof of one building that can make it look like some separated buildings. Therefore, there are issues such as spatial displacement and incorrect representations of reference building footprints. In addition, polygon 2 has an intersection with more than 1 reference polygon, which may cause problems of feature matching if the method of polygon overlay is used for feature matching.

Figure 3-1. The issues regarding matching OSM building footprints with reference ones

The issues that exist in the OSM polygon database, can cause errors in the previously mentioned feature matching algorithms such as polygon- overlay and centroid checking. Figure 3-2 illustrates that polygon 2 has a
considerable intersection with the wrong reference polygon. Furthermore, its centroid is located within the wrong polygon. Therefore, both polygon overlay and centroid checking methods may fail in finding the corresponding reference polygon for the polygon number 1. Both of these methods somehow compare the position of the polygons in the two databases. I believe that comparing only the position of the polygons is not sufficient because the spatial displacement of the OSM polygons in comparison to reference ones can cause errors in feature matching. Thus, the author propose to not only compare the position of the two polygons but also compare their shapes so that a more reliable matching can be achieved.

The second error can be the case of 3 to 7 which are represented by 5 different polygons in OSM but in the reference database, they correspond to only one polygon. The centroid of all of these polygons are located outside of the corresponding reference polygon. Therefore, the centroid method may fail to find the matching polygons. However, if the union of these shapes is compared to the reference shape, then an acceptable level of shape similarity exists between them. Hence, I believe that an algorithm that wants to find the correct matches should compare not only the polygons individually, but it also should compare the union of all candidate polygons to find out if the union has more similarity or not.

Figure 3-2. The errors of matching OSM building footprints with reference ones
In order to overcome the previously mentioned problems in feature matching and have a more reliable method, the I propose to add a shape comparison to the previous methods. In addition, the comparison and feature matching should be done for all the possible subsets of the set of candidate polygons. In the next section, the algorithm developed for this purpose is discussed.

Proposed algorithm

As mentioned in the previous section, there are a number of issues regarding feature matching for OSM buildings. Due to the displacement, the centroids of OSM polygons may not necessarily fall within the correct reference polygon. The positional accuracy of OSM polygons is relatively acceptable and for the majority of the cases, the centroid falls within the correct object. However, there are still few cases where the centroids are not within the corresponding polygon due to the poor spatial accuracy (displacement of the polygons). Moreover, the displacement can cause an overlap between the target OSM polygons and a number of incorrect reference features. To tackle these issues, the authors propose a method that matches the features based on the comparison of both position and shape of the polygons. Therefore, the results will be more reliable than comparing only the position of the polygons or their centroids.

In addition, the other problem is that sometimes the difference in the elevation of different parts of a roof may cause errors in digitizing the roof in the aerial images. [101] found that a number of OSM buildings are in fact a block of buildings in reality but the borders between them are not clearly visible in the aerial images and they are digitized as one polygon. Therefore, it is possible that a group of polygons in OSM correspond to only one polygon in the reference database or vice versa. In order to tackle this issue, the authors proposed an algorithm that first finds the candidate polygons and then check if any group of these candidates can be corresponding to a polygon in the reference database.

The flowchart of the algorithm is explained in Figure 3-3. This algorithm has two inputs: the OSM polygons and the reference polygons. Then, for each polygon in OSM, all the candidate reference polygons are identified using a polygon overlay method (calculating the intersection between the OSM polygon and all reference polygons within that location). The candidate polygons are those that have more than int_tol% intersection with the OSM polygon. The set of the candidate reference polygons is called T. Then, based on the cardinality of the set, 3 possible feature matching cases can happen. If \(|T| = 0\), then there are no candidate polygons in the reference database and it means that the OSM polygon has no match in the reference database and it is a commission. If \(|T| = 1\), then it means that the feature has only one matching polygon in the reference database which indicates a good matching. If \(|T| > 1\), then there is more than one candidate for the OSM polygon. In this case, further investigation is required to find out the correct matching polygons. Therefore, a shape similarity evaluation is
done between the OSM polygon and all possible subsets of T. Since it is not possible to compare the shape of one polygon with two separate polygons, a concave hull is calculated for each subset of T. Then, the shape of the OSM polygon is compared to the shape of the concave hull. If the concave hull of any subset of T has a shape similarity to the OSM polygon greater than $shp_tol\%$, then, the members of that subset of T will be considered as the corresponding polygons of the OSM polygon and the relation will be $1 : n$.

Figure 3-3 illustrates a number of examples when the aggregation of a group of polygons is matched with one single polygon. The aggregated polygon may not be exactly similar to the reference polygon but if the similarity is greater than $shp_tol\%$, they will be considered as matching features.

The main steps of the proposed algorithm are:

1. Firstly, find all candidates by comparing their location to the location of the OSM polygon.
2. Secondly, find which group of candidates has a shape that better fits the OSM polygon.
Proposed Feature Matching Algorithm

Figure 3-4. Proposed feature matching algorithm
When the relationship between OSM and reference database is evaluated, then, the relation between reference database and OSM should be evaluated using the same algorithm and just by changing the inputs. This reverse relation evaluation facilitates the discovery of the other types of relations that are not in the flowchart of Figure 3-4.

Completeness

Completeness refers to whether or not objects in the real world and their attributes exist in the database [36]. Usually, completeness has two main components: data completeness and model completeness [36]. In this study, only data completeness for building footprints is evaluated. Attribute completeness expresses how completely the attributes that describe the characteristics of a feature exist in the database [36]. Two main issues are related to completeness evaluation of the data: commission and omission [7]. Commission is when the object in the database does not exist in the real world and omission happens when an object in the real world is not mapped in the database [7]. In the case of building footprints of the OSM database, completeness means how complete the buildings of the study area are mapped by the OSM contributors.

There are two common methods for evaluating the completeness of OSM building footprints: unit-based method and object-based method [67]. The unit-based method compares the total area of the building polygons of the OSM database to the total area of the building footprints of the reference database in the study area [67]. The object-based method compares the total number of the OSM buildings in an area to the total number of buildings in the reference database in that area [67]. The unit-based method is easier because it does not require feature matching and it just compares the total area of the polygons of the two databases. However, the object-based method requires finding the corresponding features before comparing numbers. [67] compared the two methods and suggested the use of an object-based method because the unit-based method is highly sensitive to disparities between the building footprints in OSM and building footprints in the reference databases. [69] compared the two methods of completeness evaluation and found that neither of them pay attention to the geometrical representation of the buildings. Therefore, both methods have shortcomings that may result in overestimation or underestimation of the completeness [69]. For example, when a block of buildings in the real world are represented with just one polygon in OSM, comparing the total number of buildings may underestimate the completeness [69]. [69] proposed to merge the adjoining buildings in both databases and then compare the resulting polygons and calculate three parameters: true positive, false negative and false positive. This method tries to solve the problem that sometimes, adjoining buildings are represented by only one polygon. However, I prefer to use an object-based method with a precise feature matching because this method does not change the input polygons by merging them, thus, its results are more tangible. The authors believe that a precise feature matching can discover the relationship between OSM and reference database. Hence, the problem of 1 : n or n : 1 matching can be handled.
Unit-based method
In the unit-based method, the completeness is simply calculated based on the ratio of the total area of buildings in OSM to the total area of buildings in the reference database [23]. This method is not computationally heavy. However, a number of issues can cause uncertainty in the results [69]. Unit-based completeness can be calculated using the following equation [67]:

\[
C_{Area} = \frac{\sum_{i=1}^{n} \text{Area(footprint}_{OSM})}{\sum_{j=1}^{m} \text{Area(footprint}_{Reference})} \times 100
\]

(3-2)

where \(n\) is the number of buildings in OSM and \(m\) is the number of buildings in the reference database. A number of researches applied the unit-based method for assessing the completeness of OSM building footprints [23], [51], [67], [68].

Object-based method
In an object-based method, first, the corresponding features are detected. Then, the completeness is calculated based on the comparison of the ratio between the number of the features or the area of the features in OSM and their number or area in the reference database. Therefore, it is more reliable for completeness assessment [67]. The object-based completeness evaluation of OSM buildings using the centroid method, can be done using the following equation [67]:

\[
C_{centroid} = \frac{\sum \text{Centroid}_{ref _in _OSM}}{\sum \text{Centroid}_{ref}} \times 100
\]

(3-3)

In fact, this equation is the same as the unit-based method except it applies only to the matching polygons. The object-based completeness evaluation based on polygon-overlap method can be done using the following equation [67], [68]:

\[
C_{overlap} = \frac{\sum \text{Buildings}_{ref _overlap _OSM}}{\text{Buildings}_{ref}} \times 100
\]

(3-4)

The difference between these two equations is the way they find corresponding features. Any other method for feature matching can be used instead of the centroid or overlapping methods. Then, the completeness can be evaluated by calculating the proportion of the matched buildings in OSM to those of the reference database. The proportion can be calculated by comparing the number of matched buildings or their area. In this research, first, the two databases are matched. Then, the two completeness values are calculated. The first one calculates the ratio of the number of matched OSM features to those of the reference database, while the second method calculates the ratio of the area of the OSM features to the area of the matched reference features. The comparison of the two methods can provide an insight into the completeness of the OSM database.
Positional accuracy

In GIS, the position of an object in the real world is expressed in a spatial coordinate system and is stored in the databases [36]. The position of the objects of the real world can be obtained by repeated measurements [36]. The precision of the position refers to the spread of the results obtained by the measurements [36]. However, accuracy is the distance from the measured position to the true position (which is unknown) [36]. The ISO standard for spatial data quality defines positional accuracy as the accuracy of the position of objects with respect to a coordinate system [7]. Positional accuracy has three elements: absolute accuracy, relative accuracy, and gridded data positional accuracy [7]. Absolute accuracy is the closeness of the measured coordinates in comparison to the true coordinates, while the relative positional accuracy refers to the positional accuracy of the objects of the map with respect to the position of the other objects [7].

A number of researches evaluated the positional accuracy of the OSM building footprints [25], [68]. The common point among all these researches is that they mostly used a reference database to compare with OSM. [68] evaluated the positional accuracy of building footprints of OSM by comparing the position of their corresponding vertices. Firstly, this method finds the corresponding vertices of the OSM polygon and the reference polygon. Then, it calculates the average distance of these points as a measure of the positional accuracy of the buildings [68]. Only the buildings with a 1 : 1 relation are included in the calculations. Finally, they calculated 4 measures including maximum offset, minimum offset, average offset and standard deviation [68].

[4] proposed a method for evaluating the positional accuracy of the OSM building footprints. In the first step, this method estimates the parameters of an affine transformation between OSM building vertices and corresponding reference vertices [4]. A manual detection of more than 4 homologous points are required for each region of the map [4]. Finally, all the points of OSM are transformed using the affine transformation. Then, they are compared to the corresponding points of the reference database [4]. The distance between the two homologous points is the measure of positional accuracy in this method [4].

A simple but efficient method of positional accuracy assessment for building footprints of OSM is applied by [25]. [25] compared the position of the centroid of the building on OSM to the centroid of the corresponding building in the reference database. The distance between the two centroids can be used as an indicator for the positional accuracy [25]. The measure of positional accuracy of this method is calculated as:

\[
\text{Distance_{average}} = \sum_{i=1}^{n} \sqrt{(X_{OSM}^{i} - X_{ref}^{\text{corresponding}})^2 + (Y_{OSM}^{i} - Y_{ref}^{\text{corresponding}})^2}
\]

(3-5)
where $X_{\text{ref}}^{\text{corresponding}}$ is the X coordinate of the centroid of the polygon in the reference database that is corresponding to the centroid of the i^{th} polygon of OSM and n is the number of OSM buildings that have a 1 : 1 relationship with reference buildings.

The distance is not the only parameter that can be measured between the two centroids. [84] proposed an intrinsic quality indicator that compares the displacement of the road junctions over the time. In a normal case, the displacement of the road junctions should be distributed uniformly in all directions [84]. However, vandalism can affect distribution in one direction more than others [84]. The authors believe that this method can be used for building centroids. Therefore, we propose not only to compare the distance between the two centroids but also to evaluate the distribution of the directions. The evaluation of the directions can answer the question that whether or not the buildings of OSM (compared to the reference ones) are displaced towards any specific direction.

Shape accuracy

OSM buildings are usually digitized by the contributors from aerial imagery. [68], [69] mentioned that the buildings of OSM are in fact, a simplified representation of the buildings of the reference database. Therefore, on the one hand, the shapes of the polygons are not digitized with the same level of details as the reference database [51], [68]. On the other hand, sometimes there are some errors in the digitization process due to the lack of geographic knowledge of the contributors or even vandalism activities. Thus, a shape dissimilarity can happen based on different reasons. It is necessary to evaluate how similar are the shapes of the buildings in OSM to the shapes of the buildings in the reference database.

[68] defined the shape accuracy as the similarity between the footprints in the two databases. [68] proposed the use of a turning function to measure the similarity of the polygons. This method was used by a number of other researchers [68], [79], [100]. The method represents each polygon with a set of tangents of the edges and the length of each edge [68]. The length of each edge should be normalized by the perimeter of the polygon so that different polygons can be compared [68]. The dissimilarity of two polygons can then be calculated by comparing these two functions.

[77] proposed using a discrete Fourier Transform for calculating the shape similarity between the two databases. This method first finds the polygons with 1:1 relationship. Then, each polygon will be considered as a signal and Fourier transformation is used to express that signal in terms of a complex exponential [77]. The measure of the similarity of the two polygons is then defined, by the distance between the two exponentials [77]. This method is innovative but computationally heavy because there are many buildings in the province of Quèbec and it takes a very long time to calculate Fourier transformation for all of them.
[51] applied three measures to compare the shapes of building footprints of OSM and building footprints of the reference database. The first criterion is the ratio of the two areas [51]:

\[
\text{Area Ratio} = \frac{A_{\text{osm}}}{A_{\text{ref}}} \tag{3-6}
\]

This measure can indicate how the area of the two polygons are similar. However, this measure cannot indicate the difference in the shape of the two polygons. The second measure that is applied by [51] is compactness. The compactness of a polygon indicates the degree to which the polygon deviates from a circle [51]. The circle is considered as the most compact shape. Compactness is defined as:

\[
\text{Compactness} = \frac{\text{Area}}{(0.282 \cdot \text{Perimeter})^2} \tag{3-7}
\]

This measure can tell us more precisely if the two shapes have the same level of compactness or not. The third measure of the shape similarity applied by [51] is elongation:

\[
\text{Elongation} = 1 - \frac{W}{L} \tag{3-8}
\]

where \(W\) and \(L\) are the width and the height of the smallest rectangle containing the shape. When elongation is 0, the shape is similar to a circle, and when it is 1 the shape is similar to a line. Comparing the elongation of the OSM footprint to the reference footprint shows how similar the two polygons are from the point of view of elongation.

The other measure that can be used for comparing two shapes, is the discrete Hausdorff distance for polygons. This measure indicates how far two polygons are from each other. Low Hausdorff distance means that the points of the two polygons are close to each other, while a high Hausdorff distance means that the points constructing the two polygons are far from each other. In order to be able to use this measure as a measure of shape similarity, first, the positional displacement between the two polygons should be removed. Therefore, in this research, the OSM polygon is moved so that its centroid is placed on the centroid of the corresponding reference polygon. Then, the result of Hausdorff distance will be only due to the shape dissimilarity of the two shapes. This function is available in PostGIS extension of PostgreSQL database (https://postgis.net/docs/ST_HausdorffDistance.html). The Hausdorff distance is calculated as [104]:

\[
\text{Hausdorff Distance}(A, B) = \text{Max} (\sup_{x \in A} d(x, B), \sup_{x \in B} d(x, A)) \tag{3-9}
\]

where \(A\) and \(B\) are two closed sets and \(d\) is the Euclidean distance [104]. Therefore, if the two polygons are concentric, Hausdorff distance is the maximum possible distance between the borders of the two polygons.
The authors believe that the above-mentioned methods provide significant knowledge about the shape similarity between two polygons. However, they are not enough to provide a measure of shape similarity. Therefore, the authors applied the average distance method to measure the similarity between the two shapes. The average distance is calculated between the lines that represent the border of the two shapes. Discrete average distance between two polygons is calculated as [88]:

\[
\text{Average Distance } (A, B) = \frac{\sum_{i=1}^{n} d(p_i^A, p_i^B)}{n}
\]

where \(A \) and \(B \) are two polygons. \(D \) is Euclidean distance and \(p_i^A \) is \(i \)-th point on the border of polygon \(A \). Therefore, the average distance is the average distance between a set of points on the border of polygon \(A \) and their nearest point on the border of polygon \(B \).

In this method, firstly, the two polygons will become concentric. Then, a set of points will be generated on the border of the first polygon. Finally, the distance of each point to the border of the second polygon will be calculated. If the average distance between the two polygons is 0, it means that the two shapes are exactly similar. If the average distance is high, it means that the corresponding points of the two polygons are far from each other, which means that the two shapes are not similar.

Attribute accuracy

Attributes provide important data on spatial objects. Therefore, the accuracy of the attributes is a very important part of the quality of the data. In the case of OSM, the attributes are stored as tags. There is no rule for storing these tags. The first attribute that is used in this research is “building = yes” which is used to find out the polygons that represent any buildings [68]. The other attribute that is important is the name of the building. However, in this research, our objective is to find out the accuracy of the names. Thus, we have to find corresponding buildings between the two databases. This step is done in the previous sections. Now, the names in OSM should be compared to the names in the reference database. This comparison is done by the Levenshtein distance algorithm. This algorithm finds the number of deletions, insertions, and substitution that is required to change string \(A \) to string \(B \) [93]. Therefore, a great value of Levenshtein distance indicates that the two strings are not similar, while Levenshtein distance equal to 0 indicates that the two strings are similar.

Implementation

Study area

The study area of this research is the Province of Québec, which has a population of more than 8 million. In terms of population, Québec is the second largest province of Canada [94]. It is located in the east of Canada and is neighbor with other provinces such as Ontario and New Brunswick. The majority of the population of the
province is living in the southern part and near the borders of the United States. The northern parts and usually colder and it affects the development of urban areas in the north. Québec contains the largest French-speaking community in North America [94]. Considering the fact that the main language of the inhabitants of Québec is French, many of the features of OSM have attributes in French. Therefore, French accents such as é, à, … can be an issue if the contributor has not paid attention to the correct spelling.

The largest cities of the province are Montreal, Québec, Gatineau, and Sherbrooke. For this research, the quality of OSM was evaluated in a variety of cities in order to facilitate the comparison among the cities. Therefore, a number of large and small cities are selected. However, due to the lack of access to reference data, expanding the study to more cities and villages was not possible. Table 3-1 shows the metropolitan areas that are selected as the study area in this research. In each case, the population of the surrounding areas are not listed.

Table 3-1. Cities that are selected for the study area

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Population</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Repentigny</td>
<td>84,965</td>
<td>45.7533° N, 73.4401° W</td>
</tr>
<tr>
<td>2</td>
<td>Ville de Québec</td>
<td>542,298</td>
<td>46.8139° N, 71.2080° W</td>
</tr>
<tr>
<td>3</td>
<td>Shawinigan</td>
<td>50,060</td>
<td>46.5619° N, 72.7435° W</td>
</tr>
<tr>
<td>4</td>
<td>Rouyn-Noranda</td>
<td>42,334</td>
<td>48.2342° N, 79.0188° W</td>
</tr>
<tr>
<td>5</td>
<td>Longueuil</td>
<td>246,855</td>
<td>45.5369° N, 73.5107° W</td>
</tr>
</tbody>
</table>

Figure 3-5 illustrates the map of the province of Québec and the location of the cities and metropolitan areas that were selected as the study areas for the research. As mentioned before most of the population of Canada in general and the province of Québec in particular is concentrated in the southern part of the province. Thus, the cities selected are mostly in the southern part of the province and near the border of the United States.
Figure 3-5. The study area

Figure 3-6. Cities that are selected as case studies.
Figure 3-6 illustrates the location of the cities in the province. Québec City and Montréal are the only cities with a population of more than 0.5 million in the study area. Montréal and Longueuil are very close to each other. Most of the metropolitan areas of Québec such as Québec City, Repentigny, Montréal, and Longueuil are located near Saint Lawrence River.

Data

In this research, a method of quality assessment based on comparison to reference data was used. Therefore, the quality of OSM data was evaluated through comparison to authoritative data, which will be called reference data. The assumption is that the reference data has a perfect quality and represents the object in reality. Therefore, comparison to reference data is equal to comparison to the reality. This assumption is applied because there is no feasible way to compare the OSM data in a large scale directly to the reality.

Reference data

The reference data in this research is downloaded from Données Québec (https://www.donneesQuebec.ca/fr/). Données Québec is a collaborative hub for Québec open data. Many of the organizations and cities provide their data in Données Québec for the public. The majority of the databases are under Creative Commons 4.0 (CC) license with 6 different variants. Therefore, it allows access and use for research and even in some cases for commercial purposes. Usually, the databases are available in different formats including shapefile, GeoJSON, GeoDatabase, and even PDF. Therefore, using and downloading data from Données Québec is easy and permitted by the license terms.

In this research, the cities listed in Table 3-1 were used. These cities have different populations and are located in different areas of the province so that a comparison among them can provide insight into the criteria that may affect the quality of the OSM data. Most of these databases are provided by the cities.

Table 3-2: Links to the provider of the reference data for each city

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Repentigny</td>
<td>https://www.donneesQuebec.ca/recherche/fr/dataset/batiment</td>
</tr>
<tr>
<td>2</td>
<td>Ville de Québec</td>
<td>https://www.donneesQuebec.ca/recherche/fr/dataset/empreintes-des-batiments</td>
</tr>
<tr>
<td>3</td>
<td>Shawinigan</td>
<td>https://www.donneesQuebec.ca/recherche/fr/dataset/3c14053fd3f84c74be077cc890a8d434_0</td>
</tr>
<tr>
<td>4</td>
<td>Rouyn-Noranda</td>
<td>https://www.donneesQuebec.ca/recherche/fr/dataset/e8ac2b024e77462884f5fac1669b364_0</td>
</tr>
<tr>
<td>5</td>
<td>Longueuil</td>
<td>https://www.donneesquebec.ca/recherche/fr/dataset/ba</td>
</tr>
</tbody>
</table>
In all the databases mentioned in Table 3-2, the building footprint data was provided by the municipality and is published under the “Creative Commons 4.0 – Attribution CC BY” license. This license allows the researchers to use the data as long as the source of the data is mentioned.

OSM data

OpenStreetMap data that is used in this research was downloaded through the GeoFabrik portal (http://download.geofabrik.de). This portal provides the data of OSM for different continents, countries, and provinces. The data is available in different formats including Shapefile, *.osm, and *.pbf. *.osm is a text file that is widely used by the applications that work with OSM. It is also possible to import the OSM data into a PostGIS database using the Osmosis tool. In addition, osm2pgsql is another tool that can be used for importing the data in the PostgreSQL database. It is possible to import the Changesets into the database. A changeset is a set of all modifications and changes that were done by one user. It contains information about who is the contributor, what is his contribution, and when the contribution happened. Each contribution can be the creation of new features, modification of existing features, or deletion. If researchers want to investigate the development of OSM over time, they can use changesets. It also facilitates the study on the behavior of the contributors and their life cycle in the OSM community. However, in this research, we do not use changesets.

The database of OpenStreetMap in the province of Québec was downloaded on 4 November 2018 from GeoFabrik. This data contains building footprints all over the province. Therefore, the study area (the selected cities) should be clipped from the whole database. Figure 3-7 shows the distribution of these building footprints in the province.

As illustrated in Figure 3-7 the concentration of the building footprints is in the south of the province. Since the reference data is not available in all the parts of the province, the OSM building footprint data set should be clipped with the boundary of each city in order to have equal borders for both data sets. On 4 November 2018, there was 311,465 buildings in the database of OSM for the province of Québec. These buildings cover an area of 173,743,179.59 m². The average area of the buildings is 557.8m². The minimum and maximum of the areas of the buildings are 0.0033 m² and 228,942.6 m², respectively.

Preprocessing

Preprocessing is a step that ensures that the data that we have suites the process that we intend to do perform. In this case, we have two sets of databases that both represent building footprints. Therefore, if there are some polygons in one database that do not represent buildings, they should be removed before the rest of the processes can be done on the data.
In the case of this research, preprocessing is required because the two datasets are not in the same projection systems. The database of OSM is in GCS_WGS_1984, while the reference data are in NAD83. Thus, both datasets should use the same spatial reference system to be able to continue the processes. NAD_1983_MTQ_Lambert is used in this research because it is designed to fit the road network of Québec province that most of them are located in the south where the majority of buildings are located.

In addition, as mentioned earlier, the data of the OSM database should be clipped with the boundary of the cities in order to have two equivalent datasets. Thus, first, the boundary of each city should be detected from each reference dataset. Then, the process of clipping should be done seven times to clip OSM data by each boundary. Figure 3-8 shows reference data and clipped OSM data in Québec City.

Figure 3-8 shows that the completeness of the OSM in Québec City is not high. In addition, it shows that the buildings are not equally distributed in the city. In the old part of the city, it seems that completeness is higher than in other parts.
Figure 3-8. Reference data and clipped OSM data in Québec City.

Figure 3-9. Reference data and OSM data on the campus of Laval University.
Figure 3-9 illustrates that the campus of the university is almost completely mapped, while the neighborhood that is located in the south of the university is not mapped very well.

The next step of preprocessing is removing the polygons that are smaller than 20m² because most likely they are not representing buildings. Given that the majority of the building footprints in OSM are created by digitizing the aerial images, it is likely that a parking or swimming pool is categorized as a building due to the low resolution of Bing map aerial images. By deleting very small polygons, we avoid the risk of inaccurate results. The number of deleted polygons in Longueuil, Québec, Repentigny, Rouyn-Noranda, and Shawinigan is 1134, 79550, 26, 2940, and 21, respectively. It is important that the researchers delete very small polygons because in some cities there are huge numbers of outliers that can affect the results.

Feature Matching

As mentioned in the previous sections, previous researches used mainly two methods for feature matching 1) centroid method and 2) overlay method. None of these methods is accurate because they may match the wrong features if the polygon is displaced or has a considerable shape dissimilarity. To end this problem, we proposed an algorithm that first finds a group of candidate polygons (features) and then measures the shape similarity between any possible subgroup of this group and the target polygon. Therefore, the matching is not only based on the overlay percentage of centroid intersection. It is in fact, based on both overlay and shape similarity. Thus, our proposed method improves previous methods by adding the shape similarity checking to the matching algorithm. In this research, this method is used to find the corresponding polygons.

In order to assess the precision of this method, we have checked a number of buildings manually to see how many percent of them are matched correctly using the proposed method. There is no automatic method to find out this percentage because there is no method that does the feature matching with 100% accuracy. Among 100 randomly selected polygons in OSM, 8 of them were not matched correctly with the overlay method. Then, out of 8, 6 of them were correctly matched using the proposed method. It can be concluded that the error in the overlay method is less than 10%. However, the proposed method is powerful in fixing the majority of those errors.

Evaluating the completeness

As mentioned earlier, there are two main methods for calculating the completeness of the OSM database. The unit-based method and the object-based method. The unit-based method compares the total number or area of the buildings in the two databases, while the object-based method first finds the corresponding features and then, it calculated the completeness based on the matching objects. In the previous researches, two main methods have been used for feature matching: overlay and centroid methods. Neither of the two feature matching methods are precise in the case of OSM feature matching. In this study, first, a more precise feature matching algorithm was proposed. Then, the two databases were matched using this method. Finally, the
completeness was calculated using the corresponding features. In addition, the results of unit-based completeness assessment methods were calculated in order to compare the two methods.

Unit-based completeness evaluation

In this section, the completeness of the building footprints for OSM is evaluated by comparing it to the reference data set. Two measures of completeness are calculated: based on the number of the buildings in the two databases and based on the total area of the buildings in the two databases. Table 3-3 shows the unit-based completeness of the cities.

<table>
<thead>
<tr>
<th>ID</th>
<th>City</th>
<th>OSM No. of B.</th>
<th>OSM Area</th>
<th>Reference No. of B.</th>
<th>Reference Area</th>
<th>Based on Number</th>
<th>Based on Area</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Repentigny</td>
<td>1693</td>
<td>1183340</td>
<td>24133</td>
<td>4527833</td>
<td>7%</td>
<td>26%</td>
<td>3.7</td>
</tr>
<tr>
<td>2</td>
<td>Québec</td>
<td>14409</td>
<td>10479443</td>
<td>160485</td>
<td>30849277</td>
<td>9%</td>
<td>34%</td>
<td>3.7</td>
</tr>
<tr>
<td>3</td>
<td>Shawinigan</td>
<td>384</td>
<td>828649</td>
<td>19115</td>
<td>3806090</td>
<td>2%</td>
<td>22%</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Rouyn-Noranda</td>
<td>421</td>
<td>400208</td>
<td>26686</td>
<td>3664484</td>
<td>1.5%</td>
<td>11%</td>
<td>7.3</td>
</tr>
<tr>
<td>5</td>
<td>Longueuil</td>
<td>3027</td>
<td>3865171</td>
<td>61304</td>
<td>10622880</td>
<td>5%</td>
<td>36%</td>
<td>7.2</td>
</tr>
</tbody>
</table>

Table 3-3 shows that there is a considerable difference between the completeness calculated by the total number of the buildings and the completeness calculated based on the total area of the buildings in the two databases. In order to explain these findings, one should pay attention to the behavior of the OSM contributors. One possible hypothesis is that the contributors tend to digitize the largest objects. For example, a large shopping center attracts more attention than a small house in a residential neighborhood.

In order to test if this hypothesis is true or not, we have to find out if the large buildings are digitized more than the small ones or not. Table 3-4 shows the average area of the building footprints for the reference database and the OSM database.
Table 3-4 shows that almost in all cities, the average area of the corresponding buildings in OSM is considerably larger than the average area of the buildings in the reference database. More precisely, the ratio between the average area of the buildings in the two databases in table 3-4 is very similar to the ratio between the two completeness measures of the table 3-3. In other words, the difference between the two measures of completeness can be due to the fact that the larger buildings are mapped better in OSM while smaller ones are missing. This hypothesis that, the larger buildings are better mapped, will be evaluated using the statistical methods in the next sections.

The measure of completeness should be chosen based on the application. For example, if we want to know how many percentages of the buildings are mapped in OSM, we will use the measure based on the number. If the area covered by OSM buildings matters in the target application, then the completeness measure based on the total area should be used. The authors believe that both of these measures can provide insight into how complete OSM is in difference cities in Québec Province. However, users of the OSM data should pay attention that the average area of the buildings in OSM is considerably larger than the average area of the buildings in the reference dataset. Consequently, this difference can cause a noticeable difference between the two completeness measures.

Generally, the completeness of the buildings in the cities of the province of Québec is less than 50% based on both methods. It means that the OSM database is not complete yet and more contributions are required for having a higher completeness. Furthermore, the comparison between the cities indicates that larger cities (Québec and Longueuil) are slightly more complete than small cities. The building footprint database of OSM is
far less complete than its road database because the road network is almost complete in urban areas of the province.

Object-based completeness evaluation

Object-based completeness assessment is more realistic because it finds the corresponding features first and then calculates the completeness based on the corresponding features. In this research, a more accurate method of feature matching is applied in order to improve the accuracy of the matching. Then, the types of relationships (correspondings) between the features are evaluated. For the purpose of this section, the “OSM – Reference” relation type of “0 : 1” is considered as an omission and the relation type “1 : 0” is considered as a commission. In addition, only "1 : 1" relation is considered as correct representation and object-based completeness is calculated based on the number of “1 : 1” relations. Table 3-5 shows the completeness of the Québec cities based on the object-based method.

<table>
<thead>
<tr>
<th>ID</th>
<th>City</th>
<th>Omission (no. of B.)</th>
<th>Commission (no. of B.)</th>
<th>Completeness</th>
<th>Total No. of B. in the reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Repentigny</td>
<td>22470</td>
<td>24</td>
<td>6.7%</td>
<td>24133</td>
</tr>
<tr>
<td>2</td>
<td>Québec</td>
<td>147544</td>
<td>1164</td>
<td>7.1%</td>
<td>160485</td>
</tr>
<tr>
<td>3</td>
<td>Shawinigan</td>
<td>18840</td>
<td>138</td>
<td>1.05%</td>
<td>19115</td>
</tr>
<tr>
<td>4</td>
<td>Rouyn-Noranda</td>
<td>26383</td>
<td>127</td>
<td>1.01%</td>
<td>26686</td>
</tr>
<tr>
<td>5</td>
<td>Longueuil</td>
<td>58946</td>
<td>822</td>
<td>3.2%</td>
<td>61304</td>
</tr>
</tbody>
</table>

The object-based results are similar to the results of the unit-based method while counting the number of buildings in the two databases. The reason is that the majority of the buildings are well-mapped by the OSM contributors and as a consequence, a few percentage of them are eliminated in feature matching step.

Evaluating completeness for each grid

In order to investigate the spatial distribution of the completeness in more detail, a grid of rectangles is created and the calculations are done for each grid cell separately. In other words, firstly, the measures of quality and the indicators of quality will be calculated for a 1km*1km area (each grid cell). Then, each cell will be used as input data for the statistical analysis. Then, we can know whether or not statistically, there is a correlation.
between the measures of the quality and its indicators. A grid of 1km*1km is created for each city and is imported into the database. Next, the following measures related to completeness are calculated for each grid:

- **Unit-based:**
 1. completeness based on the area of the buildings
 2. completeness based on the number of the buildings

- **Object-based:**
 1. Omission
 2. Commission
 3. Completeness

Figure 3-10. The 5 measures of quality for each grid in Québec City
The codes for calculating these measures were written in SQL. These 5 measures of completeness are calculated for each grid cell in each city. These cells are then used for statistical analysis. Figure 3-10 illustrates the values of these measures for Québec City. This figure illustrates two unit-based measures and three object-based measures of quality. The completeness is higher in the center of the city in comparison to its suburbs. In general, omission is much more frequent than commission in the city.

Evaluating the positional accuracy

In this research, the positional accuracy is calculated by comparing the position of the centroid of the polygon in OSM to the position of the centroid of the reference polygon. The distance between the two centroids is calculated and used as a measure of the positional accuracy. Therefore, if the OSM building is digitized exactly in the same position as the reference building, the positional accuracy is high and the distance between the two centroids is zero. If the OSM building is far from the correct position, then the distance is large and the positional accuracy is low. Therefore, there is a reverse relation between positional accuracy and the distance of the two centroids. Figure 3-11 illustrates the centroid of the buildings for a sample area.

The average distance between the two centroids is calculated for each city. Only the buildings with a “1:1” relation are included in the calculations. Figure 3-11 illustrates the average distance between the centroids for each city of the province of Québec.
The positional accuracy of the building footprints was calculated using the PostGIS extension of PostgreSQL database. Generally, the positional accuracy of the building footprints is acceptable considering the fact that the quality of the aerial images is about 4m. The highest quality is related to the OSM database for Repentigny (2.1m) and the lowest quality is for Shawinigan (5.7m). In Québec City, the average distance between the OSM centroid and the corresponding reference centroid is about 3.4m which is acceptable with respect to the positional quality of the aerial images.

The distance between the two centroids can provide information about how precise the OSM polygons are positioned in comparison to the corresponding Québec polygons. However, it cannot provide information about whether or not the building footprints are shifted towards any direction or they are scattered randomly. Therefore, in this step, the scatter diagram of the displacements was analyzed to find possible patterns in the displacements or not. Figure 3-12 shows the scatter diagram of the displacements. The displacement is calculated based on the comparison of the position of OSM building’s centroid to the corresponding building’s centroid. Figure 3-13 illustrates that in some cities the displacement is not random. For example, in Québec City, on average, the buildings are shifted towards the northeast, while in Repentigny, the buildings are shifted towards the northwest. I believe that the aerial image angle can cause some radial displacement in the position of the top of the buildings. In fact, when the buildings are far from the image center, the top of the buildings is printed in a different position than their footprint. Therefore, one possible explanation can be the distance of the buildings from the center of the image. In that case, in each photo, the buildings should be displaced in a specific direction. This issue can be further investigated by measuring it for each grid cell.
Figure 3-13. Scatter diagrams of the displacement of the centroids of OSM buildings
Evaluating positional accuracy for each grid

In this section, the average positional accuracy will be calculated for each grid cell because this measure will be used in the next sections for calculating the correlation between the positional accuracy of the buildings and indicators of quality. The average distance between the centroids is calculated for each grid in PostGIS. The following figure shows the average positional accuracy for each grid in Québec City.

![Average positional accuracy for each grid in Québec City](image)

Figure 3-14. Average positional accuracy for each grid cell in Québec City

Based on Figure 3-14 the positional accuracy is almost acceptable in different parts of the city. In order to answer the question that whether or not the positional accuracy decreases with the distance from the center of the city, this result should be used to measure the correlation between the two variables.

Evaluating the shape accuracy

As mentioned earlier, the building footprints of OSM are mainly digitized by the contributors of OSM. Therefore, the shapes of the digitized polygons are not exactly similar to the corresponding shapes of the footprint of the buildings in the reality. In this section, four measures, that previous researches used for shape accuracy, will be calculated for evaluating the shape accuracy of the OSM building footprints in the selected cities of Québec Province. In fact, these measures provide us insight into how similar the OSM building footprints are to the corresponding footprints in reality (in the reference database).
Calculating the area ratio
The ratio between the area of the building footprint in OSM and the area of the corresponding building in the reference building is a measure that shows how two polygons are similar. This measure is a basic measure and easy to calculate. Figure 3-15 illustrates the ratio of the area of the building footprints between the two databases.

![Area Ratio Bar Chart](image)

Figure 3-15. Area ratio between the OSM buildings and their corresponding reference building

Figure 3-15 shows that the average area of OSM buildings is almost equal to the average area of the corresponding buildings in the reference database. In other words, the average ratio between the two areas is almost 1 for all cities. Among the cities, Rouyn-Noranda has the highest ratio and Repentigny has the lowest ratio. It means that the polygons in Repentigny are on average more similar in terms of area than in Rouyn-Noranda. It is important to know that this area ratio is calculated between the buildings that have a 1:1 relation with the buildings of the reference database. The area ratio between all the buildings in the two databases is not even close to 1.

Calculating Compactness
Compactness is a measure that was proposed in previous researches for measuring the shape similarity between OSM buildings and reference buildings. The compactness of a polygon indicates the degree to which the polygon is similar to a circle. If the buildings in OSM have similar compactness to the buildings in the reference database, then, the two buildings are more similar. Compactness does not indicate the exact similarity between the two sets of polygons. However, this measure can provide an insight into how the two polygons are similar. Figure 3-16 illustrates the compactness values for the cities.
Figure 3-16 shows that the average compactness for all the buildings in OSM is almost equal to the compactness of the buildings in the reference database. It proves that in terms of compactness the polygons in the two databases are almost similar. The highest difference between the OSM and reference compactness exists in Rouyn-Noranda, which is in line with the previous finding of the area ratio. The lowest difference is in Repentigny where the compactness of OSM buildings is 0.69 and the average compactness of the buildings in the reference database is 0.66. It means that the shapes are more similar in terms of compactness in this city. In addition, the average compactness for all cities in the OSM database is higher than the reference database. I think that the reason can be the fact that the OSM contributors generalize the buildings when they digitize them.

Calculating the Hausdorff distance
Hausdorff distance is a measure that indicates the degree to which the points of the two polygons are close to each other. Hausdorff distance represents the longest distance between the borders of the two polygons. Thus, Hausdorff distance is suitable to find the big errors or mistakes in digitizing process. In this research, first, each OSM polygon is moved so that it becomes concentric with the corresponding reference polygon. Then, the Hausdorff distance is calculated between the moved OSM polygon and the corresponding reference polygon. Finally, the average of these distances is calculated for each city. If the Hausdorff distance between the two polygons is zero, then the points of the two polygons are at the same place and the shapes are similar. If the Hausdorff distance is large, then the two polygons are not similar in shape. Figure 3-16 illustrates the average Hausdorff distance for each city.
Figure 3-17 shows that the building footprints in Repentigny have the lowest Hausdorff distance, while the building footprints in Rouyn-Noranda have the highest Hausdorff distance. It means that the shape of the buildings in OSM and reference databases are more similar in Repentigny and less similar in Rouyn-Noranda. Moreover, the Hausdorff distance in Québec, Repentigny, and Longueuil is less than 4m, which means that the average value of maximum dissimilarity between the two shapes is less than 4m. Thus, in these three cities, the shape accuracy of the buildings is better than Shawinigan and Rouyn-Noranda.

Calculating the average distance
Hausdorff distance represents maximum distance between the corresponding points of the two polygons. Therefore, this measure represents the errors and not the average dissimilarity between the two shapes. Thus, in this section, the average distance method is used to measure how similar the two shapes are. In the first step, the OSM polygon is moved so that it becomes concentric with the reference building. Then, the average distance is calculated between the OSM polygon and its corresponding polygon in the reference database. Figure 3-18 illustrates the average value of the average distance for each city.
Figure 3-18 shows that Rouyn-Noranda has the highest average distance and Repentigny has the lowest. The average distance for all cities is less than 1m. This finding is in line with what the authors expected because the average distance should be smaller than Hausdorff distance. The reason is that Hausdorff distance is the maximum distance and it is affected by a small dissimilarity in the shapes, while the average distance represents the average similarity of the two shapes and not just the similarity of the small part of the polygons. These results are also in line with the results of the previous steps where Rouyn-Noranda seems to have the least shape accuracy based on different measures.

Calculating shape accuracy parameters for each grid cell

In this section, each of the above-mentioned measures will be calculated for each grid cell. A grid of 1km*1km is used in PostGIS. The codes are written in SQL and are available for future studies. Figure 3-19 illustrates the four measures of shape accuracy for Longueuil.

Figure 3-19 shows the distribution of the shape accuracy measures in Longueuil. In order to find out whether or not shape accuracy measures are related to indicators such as population, income, and other criteria, statistical tests should be done.
Figure 3-19. Shape accuracy measures for the city of Longueuil
Evaluating the attribute accuracy

In this step, the attributes of the OSM buildings that are stored in the form of tags are evaluated. The most important attribute is the name of the building and it is evaluated in this section. All attributes in OSM are stored in the form of key=value pairs. TagInfo (https://taginfo.openstreetmap.org/) is a website that provides us with the most frequent tags that exist for a key [60]. This is a good source for evaluating different tags that the contributors used so far to describe a geographic location. Figure 3-20 illustrates the tags that are related to buildings. The other tags include information about the number of floors, use, and color of the building.

In this section, the attributes of OSM buildings are compared with the attributes of the buildings in the reference database. This comparison is made by the Levenshtein distance algorithm. This algorithm finds the number of deletions, insertions, and substitution that is required to change string A to string B [93]. Therefore, greater value for the Levenshtein distance indicates that the two strings are not similar, while a Levenshtein distance of 0 indicates that the two strings are equal. In this section, first, the two sets of the data are matched using the proposed algorithm. Then, the Levenshtein distance between the name of the building in OSM and the name of the building in the reference database is calculated. The low value of Levenshtein distance shows good attribute quality.

![Figure 3-20. taginfo results for the tag "building=yes" (source: https://taginfo.openstreetmap.org/)](https://taginfo.openstreetmap.org/)

TagInfo

building=yes

No English language description for this tag in the wiki. (See also the "MVN" tab.)

<table>
<thead>
<tr>
<th>Tag</th>
<th>Count</th>
<th>Excerpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>building</td>
<td>474279</td>
<td>35.1%</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Combinations

This table shows only the most common combinations of the most common tags.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Count</th>
<th>Excerpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>building</td>
<td>474279</td>
<td>35.1%</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

In our databases, only the two cities of Rouyn-Noranda and Repentigny have the field of “nom_batim” which represents the name of the building in the reference data. Thus, the comparison is only possible for these two cities and not for others. Among the buildings of Repentigny, only 238 and among the buildings of Rouyn-Noranda only 113 buildings have a name. In fact, other buildings even in the reference database does not have a name. It can be normal, because only a few percentage of the buildings have a name in reality. But this percentage is not considerable and we do not enter it in the statistical calculations. The average Levenshtein distance for Repentigny and Rouyn-Noranda is 2.4 and 3.3, respectively. It means that in average the names of the buildings had 2 to 3 letters different from the real name. In addition, it means that building names in Repentigny is more accurate than Rouyn-Noranda.

Statistical analysis

The purpose of this section is to find whether there is a correlation between the measures of the quality and criteria such as income and population. Therefore, the measures of the quality as well as the criteria that we wanted to test, are calculated for each grid cell. Then, the correlation is measured to find out how correlated is quality to these criteria. The criteria that are selected in this research are either mentioned by previous researches or were observed during this research by the authors. For example, one of these variables (or indicators of quality) is the density of the buildings in each region. [10] mentioned that there is an almost linear relation between the density of the OSM buildings in each region and the completeness of the buildings in that region. Therefore, the density of OSM data can be considered as a potential indicator that provides an insight into the quality of OSM for those countries where there is no reference (authoritative) data to evaluate the quality of the OSM. In this research, the finding of [10] is taken into account and also it is further expanded for other measures of the quality such as completeness based on the number of the commissions, omissions, shape accuracy and positional accuracy. Therefore, the hypothesis is that density has a relation not only with completeness but also with other measures of quality.

Another criterion (indicator) that previous researches mentioned that have a relation with OSM quality is the population [9], [96]. In [4] authors realized that there is a relation between the population and the positional accuracy of the OSM buildings. However, the previous researches just evaluated the relation between the completeness and the population of the region and there is no research to investigate the relationship between population and the other measures of the quality shape accuracy or commission and omission. Thus, in this research, the relation with population is investigated with all the measures of the quality to provide complete information about the impact of population on different aspects of the quality.
noticed that OSM building completeness increases by economic factors and the length of the OSM roads in that region. They argued that probably in economically developed areas there are more Internet users and OSM contributors, while in poor areas the access to the internet may not be easy. Furthermore, [70] argued that OSM is more complete in touristic areas and commercial centers. [23] found that OSM commercial and government buildings in Ottawa are more complete than the residential buildings. Therefore, the type of building may have a relation with the quality of the OSM building. In this research, the correlation between the quality of OSM building data with the average income of the region, OSM road length in the grid cell is calculated. In addition, [25] found out that areas with commercial and touristic buildings are more complete than other areas. Therefore, in this research, the relation between the number of points of interests in each grid cell and the quality is investigated.

In addition, during this research authors realized that bigger buildings seem to be better mapped in OSM than small buildings. In order to find out whether it is right or not the correlation between the measures of quality and the size of the buildings is calculated. Figure 3-21 illustrates the variables that correlation is calculated between them. On the left side of the potential indicators and on the right side of the Figure 3-21 the measures of quality are illustrated. In this step, the correlation between the two sets of variables is calculated. Spearman's rank correlation coefficient is used in this research because it can detect any monotonic relation between the two variables. If the increase of one of the variables, increases the other one or vice versa, then the two variables have a monotonic relation. During the previous steps, 10 measures related to the 3 quality parameters are calculated for each grid. 6 variables of potential indicators are also calculated for each grid.
Table 3-6 shows the value of Spearman’s correlation coefficient between the quality measures and quality indicators. Table 3-6 shows that among different quality measures, the measures related to completeness have a stronger correlation with quality indicators than positional accuracy and shape accuracy. A potential explanation is that the completeness in most of the grids is less than 10% and for the grids that are far from the center of the city, the completeness is 0. In those areas, there are no OSM buildings and therefore the values of shape accuracy and positional accuracy for those areas are not defined (null value). Thus, the completeness is defined (but is equal to 0) in the areas that the population is low or the areas that are very far from the center of the city, but the other measures of quality are not even defined in those areas. Consequently, we can better analyze the impact of the population on completeness than on positional and shape accuracies.

Moreover, Table 3-6 shows that the correlation between the completeness and all quality indicators is higher than 50%, except income, which means that all those variables can be used as indicators of completeness. The
values of correlation for completeness and omission are usually the opposite of each other which is because these two measures represent two opposite concepts. Among the quality indicators, the density of OSM buildings has the highest correlation with completeness measures.

The positional accuracy has the highest correlation with the density of roads and then the density of buildings. The values of the correlation between the positional accuracy (distance between the two centroids) of the density of OSM roads and buildings are negative, which means that the increase of density of buildings or roads decreases the distance between the two centroids (improvement of positional accuracy). In addition, there is a correlation of more than 40% between positional accuracy and shape accuracy which means each of them can be used as an indicator of the other one. This finding is new and non of the previous researches mentioned it so far.

Among the measures of shape accuracy, area ratio and compactness difference are the ones with lower correlations. One explanation is that these two measures are not precise measures of quality and they are rough measures. Therefore, their values do not change dramatically with the change of quality indicators. On the other hand, the correlation values of Hausdorff distance and average distance are almost similar because these two measures of quality are almost representing the same concept.

Hausdorff distance is affected by extreme shape errors but the average distance value is the average distance between the corresponding points of the two polygons and is less affected by extreme cases. Consequently, average distance has a stronger correlation with all 6 quality indicators than Hausdorff distance.

The correlation between Hausdorff distance and average distance is 86% which means they can be used as an indicator of each other. Furthermore, there is a stronger correlation between shape accuracy measures and the density of buildings and the distance to the center of the city. Thus, the density of buildings and distance to the center of the city are better indicators for shape accuracy than population and income. The negative value of the correlation between the density of buildings and average distance means that the increase of the density of OSM buildings decreases the distance between the two polygons and increases the similarity of the two shapes (increases shape accuracy). The key for interpreting Table 3-6 is illustrated in Figure 3-21.
Table 3-6. Spearman’s rank correlation between the quality measures and quality indicators

<table>
<thead>
<tr>
<th>variable</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>-0.66</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.11</td>
<td>0.04</td>
<td>0.04</td>
<td>0.13</td>
<td>0.17</td>
<td>-0.06</td>
<td>0.01</td>
<td>-0.14</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.03</td>
<td>0.14</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.08</td>
<td>0.10</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0.99</td>
<td>1</td>
<td>0.99</td>
<td>0.99</td>
<td>0.11</td>
<td>0.03</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>0.99</td>
<td>0.99</td>
<td>1</td>
<td>0.99</td>
<td>0.11</td>
<td>0.03</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>1</td>
<td>0.11</td>
<td>0.03</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>1</td>
<td>0.11</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.11</td>
<td>1</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.11</td>
<td>0.03</td>
<td>1</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.11</td>
<td>0.03</td>
<td>0.03</td>
<td>1</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>J</td>
<td>1</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.11</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>1</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>
In this section, the correlation between size of the buildings and the quality measures is evaluated. In this step, the correlation between the size of the footprint and completeness is measured for each grid cell because it is not possible to measure it for each feature. However, the correlation between size and positional accuracy and shape accuracy are calculated for each feature. The relationship between the size of the building (the area of the footprint) and the quality measures is evaluated using Spearman’s rank correlation coefficient. Figure 3-22 illustrates the correlation coefficient between size and quality measures. Considering the fact that bigger buildings are mapped with less absolute accuracy, relative accuracy is also measured to better describe the behavior of quality measure in relation to the size of the footprint. In order to calculate the relative positional accuracy, the distance between the two centroids is divided by the radius of the equivalent circle. The radius of the equivalent circle is calculated by finding the radius of the imaginary circle that has the same area as the footprint. In large buildings, the distance between the two centroids is larger when we divide it by the radius of the shape, then the relative positional accuracy will be calculated.
Table 3-7 shows that there is a very strong correlation between the completeness and average size of the buildings’ footprints in each grid. Bigger buildings attract more attention and it is more likely that one of the contributors decides to add them to the map. There is a correlation of 0.19 between absolute positional accuracy and the size of the buildings. It means that the centroids of the bigger buildings are moved more than small buildings. However, the relative positional accuracy, which is the distance between the two centroids divided by the radius of the polygon (radius of a circle with the same area), has a correlation of -0.48 with size. It means that bigger buildings are relatively better digitized in OSM. In addition, absolute shape accuracy has a correlation of 0.40 with the size of the buildings. It means that the similarity between the real shape of the building and its shape in OSM reduces when the size increases. The author believes that bigger buildings are mapped with fewer details. When the size of buildings increases, people do not digitize the details of the footprints. However, the relative shape accuracy improves when the size of the buildings footprints increases.

Statistical hypothesis testing

The correlation between quality measures and quality indicators is calculated in the previous section. However, these correlation values are not sufficient to accept or reject a positive association (relationship) between the quality measures and quality indicators. In this research, statistical hypothesis testing is used to determine whether a significant positive association exists between the quality measures and quality indicators. The H_0 and H_1 hypotheses are as follows:

- **H_0:** There is no significant positive association between the quality measures and quality indicators (variables of Table 2-2).
- **H_1:** There is a significant positive association between the quality measures and the quality indicators.
This test is a one-tail test and the number of pairs is 2,843 (which is the number of grid cells in all cities). Therefore, the critical value of Spearman’s correlation test is $\rho_c = 0.037$ at the significance level of 0.05. It means that any correlation greater than 0.037 rejects the null hypothesis and proves a positive association between the two variables. Table 3-8 shows the results of statistical test for the variables of Table 3-6. The letter Y means that a positive association is accepted, while letter N means that the positive association is not accepted. The key to interpret Table 3-8 is illustrated in Figure 3-21.

Table 3-8. Result of Spearman’s correlation test between the quality measures and quality indicators

<table>
<thead>
<tr>
<th>variable</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>H</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>I</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>J</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>Y</td>
</tr>
<tr>
<td>4</td>
<td>Y</td>
</tr>
<tr>
<td>5</td>
<td>Y</td>
</tr>
<tr>
<td>6</td>
<td>Y</td>
</tr>
</tbody>
</table>

Table 3-8 shows the result of statistical test between the quality measures and quality indicators. Result of Spearman’s correlation test shows that the correlation value is significant for most quality indicators. Completeness has significant correlation with all quality measures except area ratio. Income has a significant correlation with all quality measures except positional accuracy. The density of OSM buildings has a significant positive association with all quality measures. The distance to the centre of the city has a positive significant association with all quality measures except positional accuracy. In addition, omission has a significant positive correlation with all quality measures and quality indicators. It means that not only quality indicators such as population but also quality measures such as completeness and positional accuracy can be used as a proxy for OSM data omission.
Conclusion

This research was focused on the evaluating the quality of OSM building in Québec province in Canada. Building data are polygonal data. Therefore, the methods that evaluate the quality of building data are not the same as the methods that are developed for evaluating the quality of roads or points of interest. In this research, firstly, a literature review is done to find out the methods that are developed for evaluating the quality of polygonal data and especially buildings data of OSM. Then, the methods were implemented for five cities in the province of Québec. Next, the quality measures were calculated for the selected cities. Finally, a grid of 1km*1km was created and the values of quality measures were calculated for each grid. The grid cells were then, considered as the inputs of statistical analysis. The correlation between the quality measures and the quality indicators are then calculated.

The results of the study show that the completeness of the cities is between 1% and 7% which means that still more time is necessary before the OSM buildings database becomes complete. In addition, the completeness is lower (1%) for small cities such as Rouyn-Noranda, while it is higher (7%) for bigger cities such as Québec City. In the case of positional accuracy, the distance between the centroid of the OSM feature and the corresponding reference feature is almost 2.5m to 5.5m. The positional accuracy of the polygons is acceptable because the resolution of the aerial imagery that is used as the background of the OSM map is about 4m. For evaluating the shape accuracy, four measures were calculated in this research. According to average distance, Rouyn-Noranda has the worst and Repentigny has the highest shape accuracy.

The statistical analysis shows that the completeness of OSM buildings database has a strong correlation with population, income, the density of buildings, the density of roads, and the distance from the center of the city. It means that these 5 variables can be used as indicators of completeness. In the case of positional accuracy and shape accuracy, the correlations are lower than completeness. Thus, the 6 variables that are mentioned in this research are better indicators for completeness than for other measures. In addition, the positional accuracy and shape accuracy are correlated which means that one of them can be used as an indicator for the other one.

The correlation values between the distance to the center of the city and almost all the quality measures indicate that the OSM has a better quality in the center of the city. In addition, the results show that the size of the buildings’ footprints is an important indicator for completeness, relative positional accuracy and shape accuracy. These findings not only are in line with the previous researches, but also improves them by considering other indicators such as size of buildings as an indicator of quality measures.
Conclusion

In recent years, technological advances, and especially the advent of Web 2.0 changed the way Internet users use the Internet. Before, users of the Internet were just using the information that was provided to them by the Internet servers. However, nowadays, the Internet users are able to generate content and send it back to servers to share with other users. Therefore, the users are both users and producers of the information on the Internet. The information that users generate can be news, photos, comments, or videos. Recent development in GPS-enabled devices enabled citizens to generate geographic content such as a trajectory of the path or the polygon of a park. When users voluntarily generate geographic content and share it on the Internet, they are producing VGI.

VGI projects usually provide people with tools and technologies that allow them to generate and enrich geographic content. For example, OSM which is one of the most successful VGI projects, allows contributors to digitize map features from aerial images. They are also allowed to upload GPS coordinates to specify the position of a feature. OSM contributors can add tags to add semantic information to map features. There is no rule for tagging. Contributors are free to add any tags that they think describe the characteristics of the features. In addition, the OSM contributors may not necessarily be familiar with geographic data collection standards. Therefore, the geographic content that is generated by the contributors in OSM may not be qualified. Many researchers tried to evaluate the quality of OSM data.

The quality of geographic data is an issue that attracted the attention of many researchers. There was a debate in the 2000s about how to describe the quality of geographic data uniquely. ISO organization published a standard that mentions 6 elements for the quality of geographic data: completeness, logical consistency, positional accuracy, thematic accuracy, temporal quality, and usability.

This research evaluated the quality of OSM data based on the quality measures that have been proposed by previous researches. In the first step, a literature review was done to find the quality measures and quality evaluation methods that have been proposed by previous researches. Then, some of these methods are applied to evaluate the quality of OSM roads and buildings. Roads are linear features, while buildings are polygonal features. Thus, the measures that are proposed to evaluate their quality are not necessarily the same. In this research, the second chapter evaluated the quality of OSM roads, while the third chapter evaluated the quality of OSM buildings.

In the second chapter, the completeness, positional accuracy, and attribute accuracy of the roads was assessed for the province of Québec. The road data of OSM was more complete than the authoritative data because in urban areas it contained stairways, footways, and some other categories that did not exist in the authoritative
data. Therefore, a preprocessing was done to delete these roads. Two frequently used methods (increasing buffer method and double buffer method) were used for evaluating the positional accuracy of roads. Attribute accuracy was calculated using Levenshtein distance. Levenshtein distance is the number of insertion, deletion, and modification that is required to change the name of the road in OSM to the name of the road in the reference database. Finally, the correlation between 5 quality indicators and quality measures was calculated. The selected quality indicators are: population, income, density of OSM roads, density of OSM buildings and the number of POIs.

The main conclusions are as follows:

- The completeness of OSM roads in the province of Québec is 32.91%.
- OSM roads are much more complete in urban areas than in other parts of the province.
- 50% of the OSM roads are within 2.5 m of the authoritative roads, while almost 80% of them are within 8 m of the reference roads.
- When the buffer around the reference roads increases beyond 5m, there is no considerable difference in the percentage of OSM roads that fall within the buffer.
- In terms of the type of road, the lowest positional accuracy is observed for the OSM roads with types "unknown", "track_grades" and "path", while the rest of the road types had a better positional accuracy.
- The positional accuracy of OSM roads is better in urban areas.
- The name of the 87.76% of the OSM roads is exactly matching with the name of the corresponding roads in the reference database.
- 3.2% of the roads have a Levenshtein distance of 1, which in many cases is caused by typo errors (especially French accents).
- 5.6% of the roads have a different name in OSM (Levenshtein distance greater than 6).
- The strongest indicators for the road completeness are the density of OSM roads, population, and income.
- In terms of positional accuracy, population and income are the strongest indicators.
In terms of attribute accuracy, population and income are weak indicators, whilst the density of roads, the density of buildings, and the number of POIs are not recognized as indicators.

The correlation between the potential indicators and completeness is higher than the correlation between them and positional accuracy and attribute accuracy.

The third chapter of this research evaluated the quality of OSM buildings. In this chapter, the completeness, positional accuracy, shape accuracy, and attribute accuracy of the OSM buildings were evaluated. Completeness can be calculated in two main ways: 1) with feature matching 2) without feature matching. In this research, both methods were applied in order to compare the results. A new method of feature matching is proposed in this chapter. This feature matching algorithm found the corresponding features by comparing the percentage of the overlap and the similarity of the two shapes. Positional accuracy was evaluated by measuring the distance between the two centroids. Shape accuracy was measured by area ratio, compactness difference, Hausdorff distance, and average distance methods. Finally, the correlation between the quality indicators and quality measures is calculated. The main conclusions of the third chapter are as follows:

- The completeness of the OSM buildings for Québec, Repentigny, Shawinigan, Rouyn-Noranda, and Longueuil is 9%, 7%, 2%, 1.5%, and 5%, respectively.
- If the completeness is calculated based on the area covered by OSM buildings, then, the completeness for the above cities is 34%, 26%, 22%, 11%, and 36%, respectively.
- The reason for this difference is that the OSM contributors digitized bigger buildings first. The average size of the OSM buildings is at least 4 times more than the average size of the reference buildings for all the cities.
- Positional accuracy of the OSM buildings for Québec, Repentigny, Shawinigan, Rouyn-Noranda, and Longueuil is 3.4m, 2.1m, 5.7m, 4.6m, and 2.9m, respectively.
- The average distance between the OSM building footprints and the reference building footprints for the above-mentioned cities is 0.4m, 0.1m, 0.3m, 0.9m, and 0.5m, respectively.
- The correlation between the completeness and population, the density of OSM roads, the density of OSM buildings, the number of POIs, and the distance to the center of the city is more than 0.50 which means that these variables can be used as indicators for completeness.
Among the potential indicators, positional accuracy has the strongest correlation with the density of OSM buildings.

The correlation analysis showed that the distance to the center of the city and the density of OSM buildings are the two indicators that can be used for average distance and Hausdorff distance.

Generally speaking, the indicators have a higher correlation with completeness than with positional accuracy and shape accuracy.

There is a high correlation between shape accuracy and average distance and Hausdorff distance which means that they can be used as an indicator for each other.

There is a high correlation between the completeness and the average size of the buildings. It means that size can be used as an indicator for completeness.

Relative positional accuracy and relative shape accuracy have a high correlation with size which means that size can be used as an indicator for them.

This research evaluated the quality of OSM roads and buildings in the province of Québec. The correlation between the potential indicators of quality and the measure of quality is calculated to provide an insight into the relationships among these variables. The main contribution of this research is providing knowledge about the indicators of quality. Statistical hypothesis testing was used in this research to find which correlations are significant and as a consequence those variables can be used as indicators for a quality measure.

For the future researches, the relation between the behavior of the contributors and the quality of their contribution can be evaluated. In addition, future researches can develop methods and tools for evaluating the semantic information in OSM. Semantic information is added to OSM as tags. Researchers can evaluate the accuracy of these tags. Another topic that may interest the future researchers is the full history of OSM. The history of OSM shows the process in which the OSM database evolved. The relationship between quality indicators and the evolvement of the OSM database can be analyzed to find out whether indicators such as population have a relationship with the speed of completeness, the number of edits of the same feature, the accuracy of semantic information over the time and the speed of updates.
Bibliographie

[23] K. T. Jacobs, “Quality Assessment of Volunteered Geographic Information: An Investigation into the

115

[58] M. A. Brovelli, M. Minghini, M. E. Molinari, and G. Zamboni, “Positional accuracy assessment of the

