Lipoprotéine(a) et microcalcification de la valve aortique

Mémoire

Audrey-Anne Després

Maîtrise en sciences cliniques et biomédicales - avec mémoire
Maître ès sciences (M. Sc.)

Québec, Canada

© Audrey-Anne Després, 2020
Lipoprotéine(a) et microcalcification de la valve aortique

Mémoire

Audrey-Anne Després

Sous la direction de :

Dr Benoit Arsenault
Résumé

La sténose aortique (SA) est la maladie valvulaire la plus fréquente dans notre société. Elle est caractérisée par un remodelage fibrocalcique conduisant à une obstruction progressive du flux sanguin. La lipoprotéine(a) (Lp[a]), une lipoprotéine similaire à la lipoprotéine de faible densité, est un facteur de risque génétique fortement associé à la SA. Malheureusement, les concentrations plasmatiques de Lp(a) sont très peu influencées par des facteurs extrinsèques, tels qu’un régime alimentaire ou une médication hypolipidémiant. Des études suggèrent que la Lp(a) serait associée aux processus de calcification dans le développement de la SA. La tomographie par émission de positons couplée à la tomographie axiale permet de détecter le processus précoce lié à calcification de la valve aortique. En effet, cette technique d’imagerie nucléaire permet d’identifier et de quantifier la microcalcification au niveau de la valve aortique, un marqueur fortement lié au développement futur de calcium. L’impact de la Lp(a) sur la microcalcification de la valve aortique n’a jamais été évalué. La mesure de la microcalcification chez des individus sans SA ayant des concentrations plus ou moins élevées de Lp(a) a été effectuée. Notre hypothèse était que les individus ayant des concentrations élevées de Lp(a) ont une microcalcification plus élevée, lorsque comparée aux individus ayant des concentrations plus faibles de Lp(a). Les résultats de cette étude ont révélé que les individus sans SA mais ayant des concentrations élevées de Lp(a) présentent une microcalcification plus importante que les individus ayant de plus faibles concentrations de Lp(a). La réalisation de ce projet de recherche nous a permis d’observer cliniquement un processus actif de calcification chez des individus avec des concentrations élevées de Lp(a), et ce, malgré l’absence clinique de la maladie, illustrant l’importance de cette lipoprotéine dans le développement de la SA.
Abstract

Aortic stenosis (AS) is the most common valve disease in our society. It is characterized by fibrocalcific remodelling leading to progressive obstruction of blood flow. Lipoprotein(a) (Lp[a]), a lipoprotein similar to low-density lipoprotein, is a genetic risk factor strongly associated with AS. Plasma concentrations of Lp(a) are very little influenced by extrinsic factors, such as diet or lipid-lowering medication. Studies suggest that Lp(a) would be associated with calcification processes in the development of AS. Positron emission tomography coupled with computed tomography allows the early process related to calcification of the aortic valve to be detected. This nuclear imaging technique identifies and quantifies microcalcification at the aortic valve, a marker strongly linked to the future development of calcium. The impact of Lp(a) on aortic valve microcalcification has never been evaluated. Microcalcification measurements in individuals without AS with high or low concentrations of Lp(a) were performed. Our hypothesis was that individuals with high concentrations of Lp(a) have higher microcalcification when compared to individuals with lower concentrations of Lp(a). The results of this study revealed that individuals without AS but with high concentrations of Lp(a) have a higher microcalcification than individuals with lower concentrations of Lp(a). The completion of this research project allowed us to observe clinically an active calcification process in individuals with high concentrations of Lp(a) despite the clinical absence of the disease, illustrating the importance of this lipoprotein in the development of AS.
Table des matières

Résumé ... iii
Abstract ... iv
Liste des tableaux .. viii
Liste des figures ... ix
Liste des abréviations ... xi
Remerciements .. xiii
Avant-propos ... xiv
Introduction .. 1
Sténose aortique .. 1
 Généralités ... 1
 Épidémiologie et étiologie ... 3
 Classification de la sévérité .. 6
 Histoire naturelle de la maladie ... 8
Mécanismes et facteurs de risque de la sténose aortique .. 10
 Mécanismes .. 10
 Facteurs de risque ... 14
Lipoprotéine(a) ... 17
Implication de la lipoprotéine(a) dans la sténose aortique .. 20
Mesure de la macro- et microcalcification au niveau de la valve aortique par imagerie
 cardiovasculaire ... 23
 Tomographie par émission de positons couplée à la tomographie axiale 25
Objectifs et hypothèses ... 29
Chapitre 1 .. 29
Chapitre 2 .. 29
Chapitre 1 : Lipoprotéine(a) – c’est risqué, mais que faire? .. 30
Résumé ... 31
Abstract ... 32
Introduction .. 34
Impact of dietary interventions on plasma Lipoprotein(a) levels .. 35
Does a healthy lifestyle modulate cardiovascular risk associated with hyper-Lp(a)? 37
Impact of cardiovascular drugs on plasma Lipoprotein(a) levels .. 38
 Statins ... 38
Chapitre 2 : Lipoprotéine(a), phospholipides oxydés et microcalcification de la valve aortique évaluée par PET/CT

Résumé.. 52
Abstract .. 53
Introduction .. 56
Methods ... 57
Study participants ... 57
Assessment of aortic valve microcalcification by 18F-NaF PET/CT and macrocalcification by CT .. 58
Laboratory measurements .. 58
Statistical analyses .. 59
Results ... 59
Discussion ... 61
Study strengths and limitations .. 63
Conclusion ... 63
References ... 64
Tables ... 67
Figures ... 71

Conclusions et perspectives .. 74
Références .. 77

Annexe A : Impact d’une chirurgie bariatrique sur les concentrations de la lipoprotéine(a) chez des patients ayant une obésité sévère .. 85
Résumé ... 86
Abstract .. 87
Introduction .. 90
Material and methods .. 91
Study patients ... 91
Anthropometric measurements, medication use and comorbidities 91
Liste des tableaux

Introduction

Tableau 1. Paramètres hémodynamiques de la sévérité de la SA................................. 7

Chapitre 2

Table 1. Clinical characteristics of patients with vs. without calcific aortic valve stenosis. 67
Table 2. Correlations between Lp(a), oxPL-apoB and OxPL-apo(a) with aortic valve disease severity parameters in patients with calcific aortic valve stenosis of the Quebec cohort.......... 68
Table 3. Mean Lp(a) levels in patients with calcific aortic valve stenosis at various Lp(a) thresholds. .. 69
Table 4. Clinical characteristics of individuals without calcific aortic valve stenosis with vs. without elevated Lp(a) levels. .. 70

Annexe A

Table 1. Baseline characteristics of study patients. ..100
Liste des figures

Introduction

Figure 1. Anatomie des valves cardiaques. ... 1
Figure 2. Structure de la valve aortique tricuspide. .. 2
Figure 3. Architecture de la valve aortique ... 3
Figure 4. La prévalence normalisée selon l'âge et le nombre de cas de SA hospitalisée, opérée ou non, et la prévalence normalisée selon l'âge et le nombre de cas de remplacement valvulaire aortique chez les personnes âgées de 20 ans et plus dans la province de Québec .. 4
Figure 5. Étiologie de la SA ... 6
Figure 6. Vitesse transaortique maximale correspondant à l’anatomie de la valve aortique normale et sténosée à différents grades de la maladie .. 7
Figure 7. Représentation de l’équation de continuité .. 8
Figure 8. Adaptation de l’histoire naturelle de la SA ... 9
Figure 9. Stratification cardiaque de la sténose aortique en fonction de l’étendue des dommages cardiaques ... 10
Figure 10. Résumé de la pathophysiologie de la sténose aortique. Illustration des différentes phases impliquées dans le développement de la SA .. 11
Figure 11. Représentation du remodelage fibrocalcique retrouvé dans la SA 12
Figure 12. Association entre les concentrations de la Lp(a) et de OxPL-apoB et la progression de la SA, évaluée par tomographie axiale et échocardiographie ... 15
Figure 13. Graphique de Manhattan illustrant l’association entre le polymorphisme d’un seul nucéotide situé dans le chromosome 6 (rs10455872) et la présence de calcium au niveau de la valve aortique mesurée par tomographie axiale 16
Figure 14. Illustration de la lipoprotéine(a) .. 18
Figure 15. Illustration de l’hétérogénéité des concentrations de la Lp(a) et du nombre de répétitions de KIV dans la population générale .. 19
Figure 16. Variation moyenne en pourcentage des concentrations de Lp(a) suite à une injection de l’ASO à différente dose ... 22
Figure 17. Analyse de survie sans événement Kaplan-Meier chez des patients ayant une calcification de la valve aortique nulle ou légère, comparée à des patients avec une calcification modérée à sévère .. 23
Figure 18. Mesure du fardeau en calcium au sein d’une valve aortique 24
Figure 19. Tomographie par émission de positon couplée à la tomographie axiale (PET/CT) ... 27
Figure 20. Impact des concentrations de Lp(a) et d’OxPL sur la captation du 18F-NaF au niveau de la valve aortique obtenue lors d’un PET/CT ... 28

Chapitre 1

Figure 1. Schematic representation of the possible interaction between lifestyle-associated and clinical risk factors for cardiovascular disease and hyperlipoproteinemia(a) for cardiovascular disease risk prediction .. 50

Chapitre 2

Figure 1. Distribution and Lp(a) (A), Ox-PL-apoB (B) and Ox-PL-apo(a) (C) levels in patients with vs. without calcific aortic valve stenosis .. 71
Figure 2. Lp(a) (A), Ox-PL-apoB (B) and Ox-PL-apo(a) (C) levels in patients with calcific aortic valve stenosis separated on the basis of estimated aortic valve calcium accumulation by echocardiography. ... 72

Figure 3. A) Representative image of aortic valve microcalcification in a patient with a low Lp(a) level (CT at the top left and PET/CT at the bottom left) and a patient with a high Lp(a) level (CT at the top right and PET/CT at the bottom right). B) Mean aortic valve calcium score in individuals with high vs. low Lp(a) levels C) Mean 18F-NaF uptake (tissue-to-background ratio) in individuals with high vs. low Lp(a) levels. ... 73

Annexe A

Figure 1. Baseline Lp(a) levels between (A) surgery and control groups, and (B) women and men. ...101

Figure 2. Acute and chronic changes in Lp(a) concentrations in patients who underwent bariatric surgery and in controls. ...101

Figure 3. Changes in Lp(a) concentrations at 6 and 12 months in surgery group according to their Lp(a) concentration at baseline. ...102

Figure 4. Correlation between Lp(a) levels at baseline and at 12 months. ...102

Figure 5. Acute and chronic changes in Lp(a) concentrations in the surgery group according to baseline statin use. ...103
Liste des abréviations

<table>
<thead>
<tr>
<th>Abréviations</th>
<th>Anglaise</th>
<th>Traduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>18F-NaF</td>
<td>18F-sodium floride</td>
<td>18F-fluorure de sodium</td>
</tr>
<tr>
<td>apo</td>
<td>Apolipoprotein</td>
<td>Apolipoproteine</td>
</tr>
<tr>
<td>ATX</td>
<td>Autotaxin</td>
<td>Autotaxine</td>
</tr>
<tr>
<td>ASO</td>
<td>Antisense oligonucleotides</td>
<td>Oligonucléotide antisense</td>
</tr>
<tr>
<td>AU</td>
<td>Arbitrary unit</td>
<td>Unité arbitraire</td>
</tr>
<tr>
<td>AAVA</td>
<td>Aortic valvular area</td>
<td>Aire valvulaire aortique</td>
</tr>
<tr>
<td>BMP2</td>
<td>Bone morphogenetic protein 2</td>
<td>Protéine osseuse morphogénétique 2</td>
</tr>
<tr>
<td>CT</td>
<td>Computed tomography</td>
<td>Tomographie axiale</td>
</tr>
<tr>
<td>eQTL</td>
<td>Expression quantitative trait loci</td>
<td>Étude de la quantification de l’expression de variant</td>
</tr>
<tr>
<td>ETT</td>
<td>Transthoracic echocardiography</td>
<td>Échocardiographie transthoracique</td>
</tr>
<tr>
<td>GWAS</td>
<td>Genome-wide association study</td>
<td>Étude d’association pangénomique</td>
</tr>
<tr>
<td>IL-1β</td>
<td>Interleukin-1 beta</td>
<td>Interleukine-1 beta</td>
</tr>
<tr>
<td>IL-6</td>
<td>Interleukin-6</td>
<td>Interleukine-6</td>
</tr>
<tr>
<td>KIV</td>
<td>Kringle IV</td>
<td>Kringle IV</td>
</tr>
<tr>
<td>LBS</td>
<td>Lysine binding site</td>
<td>Site de liaison à la lysine</td>
</tr>
<tr>
<td>LC</td>
<td>Left coronary cusp</td>
<td>Feuillet coronarien gauche</td>
</tr>
<tr>
<td>LCA</td>
<td>Left coronary artery</td>
<td>Artère coronaire gauche</td>
</tr>
<tr>
<td>LDL</td>
<td>Low density lipoprotein</td>
<td>Lipoprotéine de faible densité</td>
</tr>
<tr>
<td>LDLR</td>
<td>LDL receptors</td>
<td>Récepteur aux LDLs</td>
</tr>
<tr>
<td>Lp(a)</td>
<td>Lipoprotein(a)</td>
<td>Lipoprotéine(a)</td>
</tr>
<tr>
<td>LPC</td>
<td>Lysophosphatidylcholin</td>
<td>Lysophosphatidylcholine</td>
</tr>
<tr>
<td>Lp-PLA2</td>
<td>Lipoprotein-associated phospholipase A2</td>
<td>Phospholipase A2 associée aux lipoprotéines</td>
</tr>
<tr>
<td>LysoPA</td>
<td>Lysophosphatic acid</td>
<td>Acide lysophosphatique</td>
</tr>
<tr>
<td>MPMs</td>
<td>Matrix metalloproteinases</td>
<td>Métalloprotéinases matricielles</td>
</tr>
<tr>
<td>NC</td>
<td>Non-coronary cusp</td>
<td>Feuillet non-coronarien</td>
</tr>
<tr>
<td>OG</td>
<td>Left atrium</td>
<td>Oreillette gauche</td>
</tr>
<tr>
<td>OPG</td>
<td>Osteoprotegerin</td>
<td>Ostéoprotégéine</td>
</tr>
<tr>
<td>OxPLs</td>
<td>Oxidized phospholipids</td>
<td>Phospholipides oxydés</td>
</tr>
<tr>
<td>PET</td>
<td>Positron emission tomography</td>
<td>Tomographie par émission de positons</td>
</tr>
<tr>
<td>RANK</td>
<td>Receptor activator of nuclear factor kappa B</td>
<td>Récepteur du facteur de transcription nucléaire kappa B</td>
</tr>
<tr>
<td>RANKL</td>
<td>Receptor activator of nuclear factor kappa B ligand</td>
<td>Ligand du récepteur activateur du facteur nucléaire kappa B</td>
</tr>
<tr>
<td>RC</td>
<td>Right coronary cusp</td>
<td>Feuillet coronarien droit</td>
</tr>
<tr>
<td>RCA</td>
<td>Right coronary artery</td>
<td>Artère coronaire droite</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td>French Equivalent</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>RUNX2</td>
<td>Runt-related transcription factor 2</td>
<td>Facteur de transcription RUNX2</td>
</tr>
<tr>
<td>RVA</td>
<td>Aortic valve replacement</td>
<td>Remplacement de la valve aortique</td>
</tr>
<tr>
<td>SA</td>
<td>Aortic stenosis</td>
<td>Sténose aortique</td>
</tr>
<tr>
<td>SUV</td>
<td>Standardized uptake value</td>
<td>Valeur d’absorption standardisée</td>
</tr>
<tr>
<td>TBR</td>
<td>Tissue-to-background ratio</td>
<td>Ratio de l’activité tissulaire par rapport à l’arrière-plan</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Transforming growth factors beta</td>
<td>Facteur de croissance transformant bêta</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumor necrosis factor alpha</td>
<td>Facteur de nécrose tumorale alpha</td>
</tr>
<tr>
<td>TWAS</td>
<td>Transcriptome-wide association study</td>
<td>Étude d’association pantranscriptomique</td>
</tr>
<tr>
<td>VICs</td>
<td>Valve interstitial cells</td>
<td>Cellules interstitielles de valve</td>
</tr>
<tr>
<td>VD</td>
<td>Right ventricular</td>
<td>Ventricule droit</td>
</tr>
<tr>
<td>VG</td>
<td>Left ventricular</td>
<td>Ventricule gauche</td>
</tr>
<tr>
<td>Vmax</td>
<td>Peak aortic velocity</td>
<td>Vitesse transaortique maximale</td>
</tr>
<tr>
<td>ΔP moyen</td>
<td>Mean transvalvular gradient</td>
<td>Gradient de pression moyen transvalvulaire</td>
</tr>
</tbody>
</table>
Remerciements

Les travaux de recherche présentés dans ce mémoire n’auraient pas pu être réalisés sans la collaboration et l’aide de nombreuses personnes. Tout d’abord, je souhaite remercier mon directeur de maîtrise, le Dr Benoit Arsenault, pour sa confiance, sa disponibilité et son positivisme tout au long de mon parcours académique à ses côtés. J’ai eu l’opportunité d’avoir un mentor qui a à cœur l’apprentissage de ses étudiants et qui connaît l’importance des 5 à 7.

Bien sûr, je ne peux oublier mes nombreux collègues, passés et présents, qui ont contribué à l’ambiance de rêve retrouvée au sein de notre équipe. En plus d’avoir rencontré de nouveaux amis, j’ai eu la chance d’avoir des collègues aidants et motivants. Marjorie, Raphaëlle, Nicolas, Jakie, Hasanga, William et Sylvain merci pour votre présence. Les 5 à 7, les parties de hockey, de tennis, des Laser Tags, l’escalade et les randonnées avec vous ont été mémorables.

De plus, je tiens à remercier toutes les techniciennes d’échocardiographie de l’équipe du Dr Pibarot ainsi que Maxime Nadeau, le technicien d’imagerie nucléaire, pour leur précieuse aide. Travailler avec vous, rend la réalisation des projets de recherche si facile! J’aimerais aussi remercier la Dre Marie-Annick Clavel pour son aide dans l’analyse des images cardiaques ainsi que le Dr Marc Dweck et son équipe de m’avoir accueillie lors de mon stage de deux mois.

Je voudrais aussi remercier mon amoureux des 8 dernières années, surtout pour la dernière année qui était synonyme de changement pour nous. Tu as accompli avec brio, malgré mes nombreuses absences, les préparations pour s’établir dans notre nouveau chez-soi. Merci de ta compréhension.

Finalement, je remercie les Fonds de recherche du Québec et les Instituts de Recherche en Santé du Canada (IRSC) pour le financement de ma maîtrise ainsi que le Supplément Michael-Smith des IRSC qui m’a permis d’acquérir une expertise unique en imagerie cardiovasculaire grâce à un stage à l’Université d’Édimbourg en Écosse, avec l’équipe du Dr Dweck.
Avant-propos

Mon intérêt pour la recherche est arrivé tôt dans mon parcours académique. Lors de mes études de premier cycle, j’ai contacté le Dr Benoit Arsenault pour effectuer un stage d’été en recherche dans son laboratoire. C’est un jeune chercheur dynamique et enjoué par les défis qui l’attendaient que j’ai eu l’opportunité de rencontrer. Après 3 années diversifiantes et enrichissantes, j’ai décidé de poursuivre vers les études graduées dans son laboratoire. Lors de mon dernier été en tant que stagiaire, j’ai eu la chance de travailler sur le projet ATLAS (Assessment and Treatment of Lipoprotein(a) in Aortic Stenosis), qui s’intéresse à la prévalence du phénotype de lipoprotéine(a) (Lp[a]) élevée chez des patients ayant une sténose aortique comparée à des individus sans sténose aortique. Lors de ce stage, je me suis découvert un grand intérêt pour la problématique de la sténose aortique et j’ai été choquée d’apprendre qu’il n’y avait, encore à ce jour, aucun traitement disponible. J’étais donc très enthousiaste que mon projet de maîtrise s’insère dans l’étude ATLAS et s’intéresse à un facteur de risque majeur de la maladie, la Lp(a). Plus spécifiquement, dans le cadre de mon projet de maîtrise, je me suis intéressée au risque des individus sans sténose aortique, mais ayant des concentrations élevées de Lp(a), à développer la sténose aortique. Pour y arriver, une technique d’imagerie innovante, la tomographie par émission de positons couplée à la tomographie axiale a été utilisée. Cette technique d’imagerie nucléaire permet de quantifier la calcification active au niveau de la valve aortique, un processus clé dans le développement de la sténose aortique. Un article original présentant les résultats de cette étude a été publié dans le Canadian Journal of Cardiology Open en mai 2019 et est présenté au Chapitre 2 de ce présent mémoire. Pour ce manuscrit, j’ai participé, avec l’aide de mon collègue Nicolas Perrot, aux recrutements des participants, au bon déroulement des séances d’imagerie, à la collecte des données et aux analyses statistiques. Je tiens à souligner la contribution du Dre Marie-Annick Clavel dans l’analyse des images de la valve aortique. La rédaction du manuscrit ainsi que la révision finale fut effectuée en collaboration avec mon directeur de recherche, le Dr Benoit Arsenault.

De plus, j’ai eu l’opportunité d’écrire une revue de la littérature sur l’impact des thérapies pharmacologiques et des habitudes de vie sur les concentrations de Lp(a). J’ai participé, en collaboration avec mon directeur de recherche, à la collecte de données de la
littérature scientifique ainsi qu’à la rédaction de la revue. Elle a été publiée dans le *Current Cardiovascular Risk Reports* en septembre 2018 et est présentée au Chapitre 1.

Finalement, j’ai eu le privilège d’accéder à des données issues d’une cohorte de patients ayant subi une chirurgie bariatrique. J’ai évalué l’impact de la chirurgie bariatrique mixte sur les concentrations de Lp(a), à court et à long terme, chez des patients souffrant d’une obésité sévère. Pour ce projet, j’ai effectué les analyses statistiques, l’interprétation des résultats ainsi que la rédaction de l’article. Mon directeur m’a aidée lors de la révision finale de l’article. Bien évidemment, la rédaction de cet article n’aurait pas été possible sans la collaboration de l’équipe clinique en chirurgie bariatrique de l’Institut universitaire de cardiologie et de pneumologie de Québec qui a effectué l’étude. Le manuscrit présentant les résultats est actuellement en soumission dans *Obesity Surgery*. Étant éloigné de mon champ d’expertise, l’article scientifique découlant de mes travaux sur la chirurgie bariatrique est présenté en Annexe A.
Introduction

Sténose aortique

Généralités

L’appareil cardiovasculaire est essentiel à l’organisme humain en assurant un apport suffisant en oxygène aux différents tissus qui le constituent. L’altération de l’une de ses structures peut avoir de sérieuses conséquences sur la capacité fonctionnelle de l’individu ainsi que sur sa survie. L’importance des artères coronaires ainsi que les conséquences du développement de plaques d’athérosclérose sont bien connues. Les valves cardiaques sont des structures anatomiques tout aussi importantes, permettant le passage du sang lors de leur ouverture et évitant un flux sanguin rétrograde lors de leur fermeture (Figure 1).

Figure 1. Anatomie des valves cardiaques. Image adaptée de la Fondation des maladies du cœur et de l’AVC : (https://www.coeuretavc.ca/coeur/problemes-de-sante/valvulopathie).

L’altération d’une de ces fonctions, via une obstruction et/ou une régurgitation, induit ce que l’on appelle une maladie valvulaire. L’atteinte de la valve aortique, l’une des quatre valves...
du cœur, est la plus fréquemment rencontrée en milieu hospitalier (1). Plus spécifiquement, la sténose aortique (SA) est la maladie valvulaire la plus commune dans notre société (2). La SA est caractérisée par un remodelage fibrocalcique de la valve aortique ayant comme conséquence le rétrécissement progressif de l’orifice aortique, conduisant à l’obstruction significatif du flux sanguin et à un remodelage cardiaque compensatoire (3).

Se situant entre l’aorte et le ventricule gauche (VG), la valve aortique s’ouvre grâce à l’augmentation de la pression dans la cavité du VG lors de la phase systolique d’un battement cardiaque, permettant alors le passage du sang vers la circulation sanguine. Autant son ouverture que sa fermeture sont provoquées par des gradients de pression entre l’aorte et le VG. En effet, lorsque la pression au sein du ventricule diminue, la valve aortique se ferme, jusqu’au prochain battement. La valve aortique présente normalement trois cuspides semilunaires : la coronaire droite et gauche ainsi que la non-coronarienne, nommées en référence à leur relation avec les artères coronaires (Figure 2) (4). Dans de rares cas, environ 1 à 2% de la population, seulement deux cuspides sont observées, on parle alors de bicuspidie (5).

Les feuillets aortiques sont constitués principalement de cellules interstitielles de valve (VICs ; valve interstitial cells), et, représentant moins de 5%, de cellules musculaires lisses et des fibroblastes. De plus, la matrice extracellulaire est constituée, entre autres, de collagène, d’élastine et de glycosaminoglycanes (7). Les feuillets sont séparés en trois couches distinctes ayant des caractéristiques différentes et recouvertes par l’endothélium (Figure 3).
Les cellules de l’endothélium couvrent la surface aortique et ventriculaire de la valve aortique et forment une interface entre cette dernière et le sang (8). La couche supérieure, se retrouvant du côté aortique, se nomme la fibrosa et est majoritairement constituée de fibres de collagène de type I et III alignées de façon circonférentielle, conférant force et rigidité à la valve. La ventricularis, située du côté ventriculaire, est riche en élastine et offre une compliance lors de l’ouverture et la fermeture des feuillets. Finalement, la spongiosa, au centre, est principalement constituée de glycosaminoglycanes et lubrifie la fibrosa et la ventricularis. Elle permet aussi d’absorber les chocs et les forces de cisaillement des deux couches adjacentes lors du cycle cardiaque (4).

Épidémiologie et étiologie
La SA est la maladie valvulaire cardiaque la plus prévalente dans notre société (2). Affectant 0,4% de la population, la prévalence de la maladie est augmentée dans les groupes d’âge supérieurs. En effet, elle touche entre 2,8 et 4,6% des individus âgés de 75 ans et plus (2). Au Québec seulement, un peu plus de 20 000 individus avaient un diagnostic de SA au début du siècle. En seulement 15 ans, ce chiffre a plus que doublé, touchant maintenant plus de 50 000 individus (Figure 4) (9). D’ici 2050, il a été estimé que la prévalence de la maladie chez les individus âgés doublera (1).
Figure 4. La prévalence normalisée selon l'âge et le nombre de cas de SA hospitalisée, opérée ou non, et la prévalence normalisée selon l'âge et le nombre de cas de remplacement valvulaire aortique chez les personnes âgées de 20 ans et plus dans la province de Québec. Tiré de Blais et al., 2018 (9).

Malgré le nombre grandissant d’individus touché, peu de solutions s’offrent aux patients atteints de SA. Encore à ce jour, le seul traitement disponible demeure le remplacement de la valve aortique (RVA), soit chirurgical ou par voie percutanée, associé à des coûts socioéconomiques non négligeables dans notre société (1). Les traitements pharmacologiques cardiovasculaires conventionnels, tels que les hypolipidémiants et les antihypertenseurs, ne démontrent pas d’effet significatif sur la progression de la maladie chez les patients ayant une SA (10-12). Par ailleurs, avec l’augmentation de la prévalence de la maladie et l’instauration de techniques chirurgicales par cathétérisme permettant d’intervenir chez une population à haut risque chirurgical, une augmentation importante des remplacements valvulaires effectués a été observée au cours des dernières années (1). Entre 2000 et 2016 au Québec, le nombre d’opérations associé à la SA est passé de 6 000 à près de 20 000 par année (Figure 4) (9). Malgré une mortalité post-intervention faible (13), il n’en demeure pas moins que des risques péri- et post-chirurgicaux sont présents. De plus, le RVA par des bioprothèses et des valves mécaniques n’est pas la solution absolue, puisque d’autres problématiques peuvent en découler. En effet, la durée de vie des prothèses valvulaires étant
limitée et n’étant pas à l’abri d’une dysfonction de la prothèse, une seconde intervention valvulaire peut être nécessaire (14). Celle-ci est associée à des complications interventionnelles non négligeables, tels que l’obstruction des artères coronaires et l’augmentation des gradients transvalvulaires post-intervention (15, 16). De plus, l’inadéquation prothèse-patient (ou mismatch), qui fait référence à une surface effective de l’orifice prothétique trop petite par rapport à la taille du patient entraînant des gradients postopératoires anormalement élevés, est une condition fréquente, touchant entre 20% et 70% des patients, et est associée à une mortalité et une morbidité augmentées (17). Il est donc nécessaire de trouver un traitement alternatif dans le but de prévenir le développement ou la progression de la SA, et ainsi, tenter d’éviter l’intervention de RVA, une procédure coûteuse et qui n’est pas sans risque.

Différentes étiologies de la SA ont été proposées : (1) la bicuspidie et (2) la maladie rhumatismale (3) la SA calcifiante dégénérative (Figure 5). La bicuspidie est la maladie cardiaque congénitale la plus fréquemment rencontrée et est définie par la présence de deux cuspides aortiques (18). Elle demeure une condition rare, touchant moins de 2% de la population, mais ayant des répercussions importantes, entre autres, en favorisant le développement de la SA calcifiante dégénérative (5). En effet, il est estimé qu’entre 20 et 25% des patients atteints de bicuspidie subissent un RVA (19, 20), et ce, environ 10 ans plus tôt que les patients ayant une valve aortique tricuspide (21). De plus, dans une étude regroupant près de 1000 hommes et femmes atteints de SA, environ 50% des RVA étaient effectués chez des patients ayant une bicuspidie (21). Pour sa part, la SA de cause rhumatismale est rarement vue dans les pays développés et résulte d’une fièvre rhumatismale contractée plus tôt dans la vie (1). Elle est le plus souvent observée en concomitance avec une affectation au niveau de la valve mitrale. Finalement, la SA calcifiante dégénérative implique des processus complexes et multiples résultants à un remodelage fibrotique et calcifiant des feuillets aortiques (3). Ce présent mémoire se concentre sur cette étiologie et elle sera référée uniquement par le terme SA.
Classification de la sévérité

Différents stades de la maladie peuvent être identifiés, allant du stade précoce nommé la sclérose aortique jusqu’au stade le plus sévère de la SA, nécessitant un RVA. La sclérose aortique est définie par un épaississement et/ou une légère calcification de la valve aortique détectés, mais qui ne causent pas d’obstruction significative du flux sanguin. Elle est une condition fréquemment rencontrée dans la population générale, avec une prévalence augmentée avec l’âge, mais ayant un taux de progression vers la SA relativement faible. En effet, moins de 2% par année des individus ayant une sclérose aortique progressent vers une SA (23). Pour sa part, la SA est caractérisée par un remodelage de la valve aortique causant des altérations morphologiques et hémodynamiques significatives.

L’échocardiographie transthoracique (ETT) permet l’acquisition d’informations morphologiques et hémodynamiques, essentielles dans le diagnostic et dans la quantification de la sévérité de la SA (24). Plus spécifiquement, selon les recommandations des lignes directrices américaine et européenne d’échocardiographie, l’évaluation clinique de la sévérité de la SA nécessite, minimalement, la mesure de la vitesse transaortique maximale (Vmax), du gradient de pression moyen transvalvulaire (ΔP moyen) et de l’aire valvulaire aortique (AVA) effectuée lors de l’ETT (Tableau 1) (22).
Tableau 1. Paramètres hémodynamiques selon la sévérité de la SA

<table>
<thead>
<tr>
<th>Sclérose aortique</th>
<th>ΔP moyen</th>
<th>Vmax</th>
<th>AVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Légère</td>
<td>< 20 mmHg</td>
<td>2,6 - 2,9 m/s</td>
<td>> 1,5 cm²</td>
</tr>
<tr>
<td>Modérée</td>
<td>20 - 40 mmHg</td>
<td>3,0 - 4,0 m/s</td>
<td>1,0 - 1,5 cm²</td>
</tr>
<tr>
<td>Sévère</td>
<td>≥ 40 mmHg</td>
<td>≥ 4,0 m/s</td>
<td>< 1,0 cm²</td>
</tr>
</tbody>
</table>

Stade de la maladie selon les paramètres hémodynamiques obtenus lors d’une échocardiographie transthoracique. ΔP moyen; gradient de pression moyen transvalvulaire. Vmax; vitesse transaortique maximale. AVA; aire valvulaire aortique. SA; sténose aortique.

Brièvement, la Vmax, présentée en m/s, consiste à la plus haute vitesse répertoriée du flux transaortique lors de l’ETT. Schématiquement, plus l’orifice est rétréci, plus la vitesse du sang le traversant sera élevée (Figure 6).

B) Vitesse transaortique maximale mesurée lors de l’échocardiographie

Figure 6. Vitesse transaortique maximale correspondant à l’anatomie de la valve aortique normale et sténosée à différents grades de la maladie. Tiré de Otto C. M., 2008 (25).

Le ΔP moyen est défini par la différence de pression en mmHg entre le VG et l’aorte lors de la phase systolique. Finalement, la mesure de l’AVA est effectuée avec l’équation de continuité qui utilise le concept par lequel le volume d’éjection passant du ventricule à l’aorte
via l’orifice aortique rétréci demeure le même et est représentée en cm² (Figure 7).

Figure 7. Représentation de l’équation de continuité. A₁; Surface de la voie d’écoulement, aussi appelée chambre de chasse, du ventricule gauche. V₁; Vitesse du flux sanguin au niveau de la voie d’écoulement du ventricule gauche. A₂; Aire valvulaire aortique effective. V₂; Vitesse du flux sanguin dans l’aorte. Tiré de Baumgartner H. *et al.*, 2009 (22).

En résumé, l'ETT est recommandée dans l’évaluation d’un patient ayant une SA connue ou suspectée pour confirmer le diagnostic, établir l’étiologie, déterminer la sévérité, évaluer les conséquences hémodynamiques, déterminer le pronostic et évaluer le moment opportun de l’intervention de remplacement valvulaire (24). Les ETTs doivent être effectuées régulièrement et la fréquence de ces dernières est déterminée selon la sévérité de la maladie.

Histoire naturelle de la maladie

L’histoire naturelle de la maladie a été proposée pour la première fois en 1968, par Ross et Braunwald (26). Elle est caractérisée par une période de latence, asymptomatique, qui est associée à une augmentation progressive de l’obstruction du flux sanguin et de la surcharge myocardique, suivie d’une chute drastique de la survie suite à l’apparition de symptômes. Malgré une population de patients différents de ceux rencontrés de nos jours, les conclusions de Ross et Braunwald demeurent reconnues et le moment d’intervention pour un RVA chez les patients ayant une SA sévère est principalement dicté par l’apparition des symptômes (Figure 8) (24).
Les symptômes classiques de la SA sévère, reflétant l’incapacité du muscle cardiaque à compenser l’augmentation de la post-charge induite par le remodelage de la valve aortique, sont la syncope, la dyspnée, l’angine ainsi que la dysfonction du VG (fraction d’éjection < 50%). Ces derniers sont tous des indications au RVA (24). Or, certains patients, malgré une SA sévère, demeurent asymptomatiques. Par ailleurs, chez cette population, il a été démontré que le risque de mort subite est très faible (< 1% par année) et serait même comparable à la population générale (28, 29). Néanmoins, le risque de développer des symptômes à 5 ans est très élevé. En effet, dans une étude regroupant 622 patients atteints d’une SA sévère asymptomatique, seulement 33% sont demeurés asymptomatiques suite à un suivi de 5 ans. Par ailleurs, la probabilité de demeurer exempt d’un remplacement valvulaire ou d’une mortalité cardiaque était de seulement 25% à 5 ans (29). Un suivi rapproché est donc nécessaire pour déceler l’apparition de symptômes, mais les lignes directrices ne recommandent actuellement pas l’intervention chirurgicale chez cette population (24). Leur prise en charge demeure controversée dans la littérature scientifique, entre autres, parce que la SA induit des dommages myocardiques souvent irréversibles (Figure 9) (30). Le développement de stratégies pour éviter la progression de la SA, et, par conséquent, des dommages cardiaques sévères, est urgent. L’étude des mécanismes et des facteurs de risque impliqués dans la SA pourrait permettre d’élaborer un traitement pour prévenir ou diminuer la progression de la maladie.
Mécanismes et facteurs de risque de la sténose aortique

Avec sa prévalence élevée et le vieillissement de la population, la SA représente un problème de santé publique important et croissant, qui nécessite le développement de traitements alternatifs (2). Par conséquent, de nombreuses études s’intéressent aux mécanismes impliqués dans la maladie ainsi qu’aux facteurs de risque qui y sont associés.

Mécanismes

Longtemps considérée comme une simple maladie dégénérative, les multiples phénomènes menant à la SA sont maintenant davantage établis. Les caractéristiques clés acceptées dans le rétrécissement progressif de la valve conduisant à la SA impliquent l’infiltration de lipides et de cellules inflammatoires au sein des feuillets aortiques, entraînant le développement de fibrose et l’accumulation de calcium via la différenciation des fibroblastes en ostéoblastes (Figure 10) (3).
Figure 10. Résumé de la pathophysiologie de la SA. Illustration des différentes phases impliquées dans le développement de la SA. La phase initiale implique un dommage endothélial conduisant à l’infiltration de lipides et de cellules inflammatoires au sein des feuilles aortiques. L’oxydation des lipoprotéines et la libération de cytokines pro-inflammatoires activent les métalloprotéinases matricielles conduisant à la phase fibrotique. La différenciation des fibroblastes en ostéoblastes se produit sous l’influence de cytokines inflammatoires et de voies de signalisation pro-calcifiantes. Les ostéoblastes coordonnent ensuite la calcification de la valve. Tiré de Dweck M. et al., 2012 (3).

Lipides et inflammation

Une altération de l’endothélium, via des stress mécaniques, semblerait initier l’infiltration de lipides et de molécules inflammatoires au sein des feuilles aortiques (32). Des études immunohistochimiques effectuées sur des valves aortiques explantées ont illustré la présence de lipoprotéines, telles que la lipoprotéine de faible densité (LDL; low-density lipoproteins) et la lipoprotéine(a) [Lp(a)], et de cellules inflammatoires, telles que des macrophages et des lymphocytes T, au sein de lésions précoces, avec une intensification de leur présence et de leur infiltration dans des lésions plus importantes (33, 34). Par ailleurs, il a été démontré que les LDLs accumulées au sein d’une valve aortique subissent des modifications oxydatives favorisant ainsi l’état inflammatoire (35). En effet, ces LDLs oxydées sont associées à une accumulation de marqueurs inflammatoires, tels que la présence de macrophages, et favoriseraient la libération du facteur de nécrose tumorale alpha (TNF-α), une cytokine inflammatoire, par ces derniers (36, 37). De plus, de nombreuses autres cytokines ont aussi été observées au sein de feuilles aortiques sténosés, telles que l’interleukine-1 bêta (IL-1β), l’interleukine-6 (Il-6) et le facteur de croissance transformant bêta (TGF-β ; transforming growth factor beta).
growth factors beta), et sont localisées près de leucocytes (38 - 40). Par ailleurs, une étude effectuée sur 285 valves explantées de patients ayant une SA sévère a démontré que la présence d’une infiltration inflammatoire chronique au sein des feuillets aortiques est indépendamment associée à plusieurs indices de remodelage, ce qui suggère que l'inflammation participe activement au processus de fibrose ainsi qu’à la minéralisation de la valve aortique (41). De façon intéressante, des études utilisant de l’imagerie moléculaire ont démontré que la minéralisation de la valve aortique est dépendante de l’inflammation, et par conséquent, que les processus inflammatoires précèdent la calcification de la valve aortique (42, 43).

Remodelage fibrocalcique

Lors de la résection d’une valve aortique sténosée, il est possible d’observer un remodelage important des feuillets, caractérisé par leur épaississement et la présence de nodules de calcification (Figure 11) (34).

Figure 11. Représentation du remodelage fibrocalcique retrouvé dans la SA. (A) Photographie d’une valve aortique sténosée présentant un remodelage fibrocalcique important. (B) Coupe histopathologique d'une valve présentant une SA sévère. Le tissu est épaissi par l'excès de matière fibreuse, et le nodule calcifié contribue à modifier l'architecture normale du feuillet. Tiré de Lindman et al., 2016 (6).
Les cytokines inflammatoires infiltrées telles que TNF-α, IL-1β et TGF-β, stimulent le remodelage de la matrice extracellulaire de la valve aortique, en stimulant l’activation des métalloprotéinases matricielles (MPMs) (38, 44, 45). Les MPMs sont impliquées, de façon physiologique et pathologique, dans le remodelage de la matrice extracellulaire (46). Dans la SA, leur concentration est augmentée au sein des feuillets aortiques induisant une altération de la régulation de la matrice extracellulaire (38). Normalement alignés de façon circonférentielle, une désorganisation des fibres de collagène est alors observée (38, 47). En plus des processus fibroïques, il est possible d’observer une formation et un remodelage osseux actifs au sein des feuillets aortiques sténosés, avec une minéralisation similaire à celle retrouvée dans les os et le développement de cristaux d’hydroxyapatite, constituant majeur de la masse osseuse (47, 48). Par ailleurs, un phénotype ostéoblastique est observé dans la SA, avec une expression augmentée d’ostéopontine, de sialoprotéine osseuse, d’ostéocalcine, du facteur de transcription spécifique des ostéoblastes Cbfα1, connu aussi sous le nom RUNX2 (Run-related transcription factor 2), de la protéine osseuse morphogénétique 2 (BMP2; bone morphogenetic protein 2) et des phosphatases alcalines (47-49), tous associés à la formation de masse osseuse et à la différenciation des ostéoblastes, cellules formatrices de tissus osseux. De plus, la différenciation des myofibroblastes en ostéoblastes serait aussi influencée par différentes voies de signalisation pro-calcifiantes, telles que la voie Wnt3/Lrp5/β-caténine (49) et celle impliquant le récepteur du facteur de transcription nucléaire kappa B (RANK; receptor activator of nuclear factor kappa B) (50). En effet, chez des valves aortiques calcifiées explantées, l’expression du co-récepteur Lrp5 et de la glycoprotéine Wnt3 est augmentée (49). En se liant au Lrp5, Wnt3 induit la différenciation ostéoblastique via l’activation de la β-caténine, favorisant ainsi la calcification de la valve aortique. Pour sa part, le RANK induit la différenciation et l’activation des ostéoclastes lorsqu’il interagi avec son ligand (RANKL; receptor activator of nuclear factor kappa B ligand) (51). Dans un modèle murin de perte de fonction, les souris RANK-/- présentaient une ostéoporose sévère, reflétant l’importance du complexe RANK/RANKL dans le remodelage osseux (52). Dans une étude évaluant des myofibroblastes de valve aortique humaine traités avec le RANKL, il était possible d’observer la présence d’une calcification et d’un phénotype ostéoblastique, avec une augmentation de l’expression de l’ostéocalcine, du BMP2 et de l’activité des
phosphatases alcalines (53). Finalement, dans des lésions calcifiées de valve aortique, l’expression de l’ostéoprotégérine (OGP; *osteoprotegerin*), un récepteur soluble qui se lie au RANKL inhibant ainsi l’interaction du RANK avec son ligand, est réduite et celle de RANKL est augmentée (53). Ce déséquilibre RANK/RANKL/OPG favoriserait la calcification de la valve aortique, un processus clé dans le développement de la SA.

Facteurs de risque

De nombreux facteurs de risque liés au développement et à la progression de la SA ont été identifiés. Bien évidemment, le vieillissement ainsi que la malformation de la valve aortique sont associés à un risque accru de développer la maladie. De façon similaire à l’athérosclérose, l’hypertension artérielle, le diabète, le tabac, le cholestérol LDL et la Lp(a) ont aussi été identifiés comme étant des facteurs de risque de la SA (1, 54). Certains facteurs de risque sont plus spécifiquement associés à la progression de la maladie. En effet, dans deux études cliniques, des concentrations élevées de Lp(a) et de phospholipides oxydés (OxPLs; *oxidized phospholipids*) n’étaient pas associées à la sévérité de la maladie, mais plutôt à une progression plus rapide de la SA, quantifiée par la progression de la Vmax évaluée à l’ETT et par les changements de l’accumulation de calcium au niveau de la valve aortique mesurée par tomographie axiale (CT; *computed tomography*) (55, 56) (Figure 12). L’hypertension artérielle et le syndrome métabolique seraient aussi associés à une progression plus rapide de la SA (57, 58).
Figure 12. Association entre les concentrations de la Lp(a) et de OxPL-apoB et la progression de la SA évaluée par tomographie axiale et échocardiographie. (A et B). Les patients du tertile supérieur de Lp(a) et d’OxPL-apoB ont démontré une progression plus rapide du score calcique mesuré par tomographie axiale au niveau de la valve aortique (C et D), et une progression hémodynamique plus rapide, exprimée sous forme de changement annualisé de la Vmax mesurée par échocardiographie. (E) Illustration de l’impact de la Lp(a) et des OxPLs sur la progression clinique de la SA. Les patients présentant des concentrations plasmatiques élevées de Lp(a) et d’OxPL ont un taux de progression de la SA significativement plus rapide. Tiré de Zheng et al., 2019 (56) et Capoulade et al., 2015 (59).

De plus, des variants génétiques ont été identifiés dans la SA. En 2005, une association entre des variations dans le gène NOTCH1, codant pour un récepteur transmembranaire impliqué dans l’embryogenèse cardiaque, et la SA a été, pour la première fois, rapportée. En effet, Garg et collaborateurs ont identifié des mutations au sein du gène NOTCH1 dans 2 familles distinctes ayant plusieurs cas d’anomalies cardiovasculaires, telles que des bicuspidies et de la calcification de la valve aortique (60). De plus, le même groupe de recherche a découvert que NOTCH1 influence l’expression de RUNX2, un facteur de transcription impliqué dans le processus ostéogénique de la SA (60). Plus tard, un autre groupe de recherche a démontré que NOTCH1 induirait aussi la calcification de la valve aortique en régulant l’expression de BMP2 (61). En régulant RUNX2 et BMP2, NOTCH1 est associé au développement de la SA, et ce, même chez les individus ayant une valve aortique tricuspide (62).

Plus récemment, une étude d’association pangénomique (GWAS; genome-wide association study) effectuée par Thanassoulis et collaborateurs a permis d’identifier le gène LPA, codant pour l’apo(a), dans la SA. En effet, ils ont, dans un premier temps, analysé l’association entre
des variations génétiques et la présence de calcium au niveau de la valve aortique dans différentes cohortes, regroupant près de 7000 individus ayant des données de génotypages et de CT. Ils ont démontré que le polymorphisme nucléotidique (SNP; Single-Nucleotide Polymorphism) rs10455872, au locus LPA situé sur le chromosome 6, était le variant génétique le plus fortement associé à l’accumulation de calcium au niveau de la valve aortique mesurée par CT (Figure 13) (63). Cette observation a été reproduite dans d’autres cohortes indépendantes, issues de différents groupes ethniques. Par la suite, l’utilisation de la randomisation mendélienne, un outil génétique permettant d’inférer la causalité entre un gène associé à un trait d’intérêt et la survenue d’un évènement, a permis de confirmer la relation causale entre les concentrations de Lp(a) et l’accumulation de calcium au niveau de la valve aortique (63).

Figure 13. Graphique de Manhattan illustrant l’association entre le polymorphisme d’un seul nucléotide situé dans le chromosome 6 (rs10455872) et la présence de calcium au niveau de la valve aortique mesurée par tomographie axiale. Chaque point représente une variation du génome (SNP ; Single-Nucleotide Polymorphism). L’axe des X montre la localisation des SNP’s dans le génome, selon leur position chromosomique, et l’axe des Y représente la significativité de l’association. Tiré de Thanassoulis et al., 2013 (63).

D’autres groupes de recherche ont également démontré que ce variant génétique est le SNP le plus fortement associé à la SA (64, 65), supportant ainsi l’existence d’une relation causale
entre la Lp(a) et la SA ainsi que l’implication de la variation génétique au locus LPA dans le développement de la maladie. Les mécanismes impliquant la Lp(a) dans le développement de la SA seront développés plus loin.

Finalement, PALMD est le plus récent gène découvert étant associé à la SA (66, 67). Il a été identifié par une étude d’association pantranscriptomique (TWAS; transcriptome-wide association study), combinant une GWAS et une étude de la quantification de l’expression de variant (eQTL; expression quantitative trait loci) sur des valves aortiques sténosées. Des analyses par randomisation mendélienne, effectuées sur deux cohortes distinctes, ont confirmé l’association causale entre PALMD et la SA (67). Des études seront nécessaires pour éclaircir les mécanismes exacts impliqués pouvant expliquer cette association.

Lipoprotéine(a)

La Lp(a) est une molécule riche en cholestérol qui est constituée d’une particule LDL sur laquelle l’apolipoprotéine (apo)-B est liée par un pont disulfure à une apo(a), une glycoprotéine hautement polymorphique (figure 13A) (68). Cette apo(a) est caractérisée par la présence de domaines Kringle, en référence à la viennoiserie scandinave. Les principaux constituants de l’apo(a) consistent à une série de dix différents types de Kringle IV (KIV), qui est homologue au plasminogène, suivi d’un domaine Kringle V et d’un domaine protéase inactif (Figure 13B) (69, 70). Elle comporte une seule copie de chaque domaine mise à part le KIV de type 2 qui est présent en plusieurs copies (71). Le nombre de copies du KIV de type 2 et, par conséquent, la taille de l’apo(a) est hautement hétérogène d’un individu à l’autre et sont négativement associés aux concentrations plasmatiques de Lp(a) (72, 73). Par conséquent, les individus ayant de petites tailles d’apo(a) ont des concentrations plus élevées
de Lp(a) que ceux ayant de grandes tailles d’apo(a). Cette association inverse entre les concentrations plasmatiques de Lp(a) et la taille de l’isoforme de l’apo(a) serait expliquée, en partie, par un taux de production plus important pour les petites isoformes (74). La Lp(a) est le transporteur préférentiel des phospholipides oxydés (OxPLs) (75). Au niveau de l’apo(a), la liaison du OxPL s’effectue principalement au niveau du KIV de type 10 grâce à la présence d’un fort site de liaison à la lysine (LBS ; lysine binding site) (Figure 14B) (76).

Les concentrations de Lp(a) sont déterminées à près de 90% par le génome de l’individu (77). Des variations génétiques dans le gène LPA, situé sur le chromosome 6q-26-27, influencent les concentrations circulantes de Lp(a) (63, 65). Plus spécifiquement, la variation du nombre de copies du KIV de type 2 au locus LPA est l’un des déterminants les plus importants des
concentrations de Lp(a) (73). Dans une population, l’étendue des concentrations de Lp(a) est très large, diffère d’une ethnicité à l’autre et n’est pas normalement distribuée (72). Il est estimé que jusqu’à 20% de la population pourrait avoir des concentrations élevées (≥ 125 nmol/L) de Lp(a) (78).

Figure 15. Illustration de l’hétérogénéité des concentrations de la Lp(a) et du nombre de répétitions de KIV dans la population générale. (a) Distribution de la concentration de la Lp(a). (b) Concentration de la Lp(a) selon le nombre de répétitions de KIV. Tiré de Kronenberf et al., 2013 (73).

Malgré sa découverte en 1963 par Berg et collaborateurs (79), plusieurs questions concernant le métabolisme de la Lp(a) demeurent à éclaircir. En effet, en dépit des nombreuses années de recherche, les lieux d’assemblage et de clairance de la Lp(a) sont controversés dans la littérature scientifique (80). Il est tout de même établi que le gène LPA est fortement exprimé au niveau du foie et, par conséquent, l’apo(a) est principalement synthétisée dans le foie, tout comme l’apoB (73, 81). De plus, la liaison entre l’apo(a) et l’apoB serait effectuée au niveau du KIV de type 9 (82). Par contre, malgré l’existence de nombreuses hypothèses, le site d’assemblage de la Lp(a) demeure encore inconnu à ce jour. Dans une revue de littérature sur le sujet, Reyes-Soffer propose 2 sites potentiels ; (1) l’assemblage s’effectue dans le foie ou tout juste à sa surface ou ; (2) une partie de l’assemblage s’effectue dans le foie et une certaine quantité d’apo(a) est sécrétée par le foie et se lie à la particule d’apoB des LDLs circulantes (80). Concernant la clairance de la Lp(a) circulante, elle aussi demeure incomprise, mais il a été proposé qu’elle se produirait principalement par voies rénales et hépatiques. Des études observationnelles de patients atteints d’une maladie rénale illustrent le rôle potentiel des reins dans l’excrétion de la Lp(a). En effet, des concentrations sanguines plus importantes de Lp(a) sont retrouvées chez les patients ayant une atteinte rénale lorsque
comparées à un groupe contrôle, ainsi qu’une excrétion urinaire plus faible d’apo(a) (83, 84). De plus, il a aussi été proposé que les récepteurs aux LDLs (LDLR) pourraient contribuer à la clairance de la L(a). Par contre, cette hypothèse a été réfutée plusieurs fois (85, 86), renforcée par l’inefficacité des statines, molécules qui augmentent l’expression des LDLR, à réduire les concentrations de Lp(a). Au contraire, la plus récente méta-analyse sur le sujet démontre une augmentation des concentrations de la Lp(a) avec l’utilisation de la statine, qui serait expliquée par une augmentation de l’expression du gène LPA et de la production de l’apo(a) dans les hépatocytes traités (87). D’un autre côté, l’utilisation d’un inhibiteur de la proprotéine convertase subtilisine/kexine de type 9 (PCSK9 ; proprotein convertase subtilisin-kexin type 9), une molécule qui empêche la dégradation des LDLR et, par conséquent, augmente la concentration des LDLR à la surface des hépatocytes, réduit les concentrations de Lp(a) (88). Or, l’effet des inhibiteurs de la PCSK9 sur les concentrations de Lp(a) semble davantage être expliqué par une production diminuée que par l’augmentation du catabolisme via les LDLR (86, 89). Cependant, des résultats contradictoires existent dans la littérature scientifique (90, 91). Par ailleurs, une étude génétique a démontré que des variations génétiques au locus PCSK9 associées à l’inhibition de la protéine n’influencent pas les concentrations de Lp(a) (92). Plusieurs questions persistent concernant le métabolisme de la Lp(a) et il est nécessaire d’explorer davantage ce sujet controversé. De façon générale, les facteurs qui influencent les concentrations de Lp(a) sont très peu connus. En effet, malgré le grand nombre d’études évaluant l’impact d’une thérapie ou d’une intervention sur les concentrations de Lp(a), très peu d’entre elles ont rapporté une réduction significative. Encore une fois, de nombreux résultats contradictoires envahissent la littérature scientifique. Le chapitre 1 de ce présent document couvre le sujet, dans une revue de la littérature scientifique s’intitulant Lipoprotein(a)—It Is Risky, but What Do We Do About It? publiée dans le Current Cardiovascular Risk Reports en septembre 2018.

Implication de la lipoprotéine(a) dans la sténose aortique

De nombreuses études génétiques et populationnelles ont établi la Lp(a) comme étant un facteur de risque causal de la SA (63, 65, 93). Les mécanismes expliquant ces observations sont de plus en plus décrits dans la littérature scientifique et de nombreuses voies mécanistiques ont été proposées pour expliquer l’association entre la Lp(a) et la SA. Entre autres, des études fondamentales ont démontré que la Lp(a) provoque la calcification des
VICs de valve aortique humaine normale (94-96). Dans une étude récente, Yu B et al. ont montré que la présence de Lp(a) augmente significativement les dépôts de calcium dans les VICs aortiques humaines (94). Cette observation pourrait s'expliquer par la présence et/ou par une régulation augmentée de protéines impliquées dans la minéralisation cellulaire, le dépôt de calcium et la biogenèse de vésicules ainsi que par la régulation à la baisse de la Fétuine A, un inhibiteur de la calcification, dans les cellules traitées avec de la Lp(a) lorsque comparées aux cellules non traitées (94). De plus, il est important de mentionner que la contribution de la Lp(a) dans la minéralisation de la valve aortique est en partie attribuable aux particules qu'elle transporte. En effet, il est bien connu que le Lp(a) transporte une grande quantité de OxPLs (75), une particule pro-inflammatoire qui favorise la calcification des cellules vasculaires (97). De plus, la Lp(a) est également enrichie en autotaxine (ATX) qui est une enzyme qui transforme la lysophosphatidylcholine (LPC) en acide lysophosphatidique (LysoPA ; *lysophosphatidic acid*). Dans des VICs, la LysoPA générée par ATX agit comme médiateur à la minéralisation en stimulant les voies du facteur nucléaire β, d’IL-6 et de BMP2 (98), reconnues pour avoir des propriétés ostéogéniques. Par ailleurs, l'inhibition de l'ATX empêche l'effet prominéralisant de la LysoPA (98). Dans les valves aortiques minéralisées, les concentrations d’ATX ainsi que l'activité d’ATX et de la LysoPA sont plus élevées lorsque comparées à des valves témoins non minéralisées (98). La Lp(a) est également enrichie en phospholipase A2 associée aux lipoprotéines (Lp-PLA2 ; *lipoprotein-associated phospholipase A2*) (99), une enzyme fortement exprimée dans la SA. La Lp-PLA2 pourrait contribuer à la minéralisation de la valve en utilisant les OxPLs transportés par la Lp(a) pour générer la LPC, impliquée dans la production du LysoPA. De plus, la LPC augmente la minéralisation des VICs en favorisant l'apoptose et induit l'expression d'enzymes génératrices de phosphates (100), qui est associée à la minéralisation (101). Il est intéressant de noter que la Lp(a), les OxPLs, l’ATX et la Lp-PLA2 sont co-localisés au sein des valves aortiques minéralisées. Récemment, Zheng et al. ont évalué l’effet de la Lp(a) sur des VICs ainsi que l’implication des OxPLs dans les résultats obtenus. Dans un premier temps, ils ont observé qu’une d’exposition d’une semaine à 100 mg/dl de Lp(a) induit une augmentation de l’expression d’IL-6, de BMP2 et de RUNX2. La pré-incubation de la Lp(a) avec l’anticorps monoclonal E06 contre les OxPLs atténue l’effet ostéogénique précédemment observé (56). Ceci illustre l’importance des OxPLs dans la pathophysiologie de la Lp(a) dans...
la SA.
En résumé, le rôle de la Lp(a) dans la minéralisation des VICs pourrait s’expliquer par les substrats nocifs qu’elle transporte et qui favorisent le développement et la progression de la SA. La mesure des concentrations de la Lp(a) en clinique pourrait mener à l’identification des individus à risque de développer la SA, et ainsi permettre l’instauration précoce d’un traitement pharmacologique puisque des agents thérapeutiques ciblant la Lp(a) spécifiquement sont actuellement en développement. Entre autres, l’oligonucléotide antisense (ASO ; *antisense oligonucleotides*) ciblant le gène LPA conjugué à un ligand (IONIS-APO(a)-L_{RX} ou AKCEA-APO(a)-L_{RX}) réduit de façon dose dépendante les concentrations de Lp(a) (Figure 16). En effet, chez des individus ayant des concentrations de Lp(a) plus élevées que 75 nmol/L, des réductions de 78% et 85% des concentrations de Lp(a) suite à une seule injection de 80mg et 120mg de l’ASO, respectivement, ont été observées. De plus, une réduction des concentrations plasmatiques des OxPLs a aussi été observée suite à l’administration de l’IONIS-APO(a)-L_{RX} (102).

Figure 16. Variation moyenne en pourcentage des concentrations de lipoprotéine(a) suite à une injection de l’ASO à différentes doses. Tiré de Viney *et al.*, 2016 (102).

Des études cliniques devront être menées afin de démontrer que la réduction des concentrations de Lp(a) prévient le développement de la SA chez les individus caractérisés...
par une Lp(a) élevée. Or, dans un premier temps, il est nécessaire de démontrer cliniquement l’association entre le phénotype de la Lp(a) élevée et le risque futur de développer la SA et l’imagerie cardiovasculaire semble être un outil prometteur.

Mesure de la macro- et microcalcification au niveau de la valve aortique par imagerie cardiovasculaire

L’imagerie cardiovasculaire est un outil diagnostique et pronostic essentiel dans l’évaluation clinique d’un patient souffrant de SA. Tel que mentionné précédemment, l’ETT demeure l’étalon d’or en imagerie cardiovasculaire dans l’évaluation de la SA, en permettant la mesure des paramètres de sévérité de la maladie et de leur progression, ainsi que dans l’évaluation de la fonction myocardique (24). De plus, l’ETT peut aussi être utilisée dans l’évaluation semi-quantitative de la sévérité de la calcification, soit faible, modérée ou sévère. Des études ont observé une association entre la sévérité de la calcification au niveau de la valve aortique estimée par ETT et la survenue d’évènements (28, 103). Néanmoins, l’évaluation de la calcification par ETT demeure une estimation subjective et pourrait possiblement refléter autant la calcification que la fibrose.

Figure 17. Analyse de survie sans évènement Kaplan-Meier chez des patients ayant une calcification de la valve aortique nulle ou légère, comparée à des patients avec une calcification modérée à sévère. Tiré de Rosenhek et al., 2000 (28).
De façon plus objective, la sévérité de la calcification au niveau de la valve aortique peut être évaluée par CT, une technique d’imagerie de type Rayon X (Figure 18A). Le fardeau de calcium valvulaire est quantifié en utilisant la superficie et la densité pondérée d’une région donnée calcifiée.

Figure 18. Mesure du fardeau en calcium au sein d’une valve aortique. (A) Image thoracique d’une tomographie axiale d’une valve aortique calcifiée. (B) Corrélation entre le score calcique obtenu lors d’une tomographie axiale (EBCT) et le poids du calcium mesuré chez 20 valves aortiques sténosées. Tiré de Clavel et al., 2014 et Messika-Zeitoun et al., 2004 (104, 105).

La valeur obtenue, représentée sous forme de score calcique valvulaire et exprimée en unité arbitraire (AU ; *arbitrary unit*), est associée positivement aux différents paramètres de sévérité, tels que l’AVA et la Vmax. Par ailleurs, l’étude pathologique de valves aortiques sténosées a démontré une forte corrélation entre le score calcique obtenu lors d’une CT et le poids du calcium dans la valve (Figure 18B) (105). Finalement, une étude multicentrique, incluant près de 800 patients ayant une SA, a démontré la valeur ajoutée du score calcique valvulaire dans l’évaluation clinique du patient (104). En effet, suite à un suivi de 10 ans, un score calcique valvulaire considéré comme sévère, c’est-à-dire plus grand que 1274 AU et 2065 AU pour les femmes et les hommes respectivement, était associé à une mortalité accrue chez des patients souffrant de SA. Bien que la CT et l’ETT puissent fournir des informations concernant la calcification établie
(macrocalcification), elles ne permettent pas de détecter les premiers stades de calcification valvulaire et offrent un aperçu limité des mécanismes impliqués dans la minéralisation de la valve aortique. Entre autres, elles ne permettent pas l’évaluation de l’activité calcifiante, aussi appelée microcalcification, qui est considérée comme l’initiateur principal de la progression de la maladie. À notre connaissance, seulement une technique d’imagerie offre la possibilité d’identifier la calcification en développement au sein de la valve aortique, avant qu’elle ne soit visible par d’autres modalités d’imagerie, et cette technique se nomme la tomographie par émission de positons couplée à la tomographie axiale (PET/CT; positron emission tomography/computed tomography).

Tomographie par émission de positons couplée à la tomographie axiale

La PET/CT est une technique d’imagerie nucléaire utilisée dans diverses pathologies et nécessitant l’utilisation d’un isotope radioactif. En identifiant les processus biologiques à l’intérieur du corps, cette modalité d’imagerie a le potentiel d’offrir d’importantes connaissances mécanistiques sur la pathophysiologie. Dans la SA, l’utilisation du radiotracer 18F-fluorure de sodium (18F-NaF), permet l’évaluation de la microcalcification au niveau de la valve aortique en quantifiant l’influx de fluorure de sodium au sein de cette dernière. Le 18F-NaF est directement incorporé dans les cristaux d’hydroxyapatite par un mécanisme d’échange avec les groupes hydroxyles et est donc un marqueur de la calcification active des tissus (106).

Lors de l’analyse, diverses transformations doivent être effectuées pour permettre la quantification de l’absorption du 18F-NaF observée dans la valve aortique lors de la PET/CT (107). Dans un premier temps, la valeur d’absorption tissulaire mesurée au niveau de la valve aortique doit être normalisée en corrigeant par la dose injectée au participant par poids corporel. Cette transformation nous permet d’obtenir la valeur d’absorption standardisée (SUV ; standardized uptake value), qui est une unité semi-quantitative sans dimension largement utilisée et validée de l’absorption tissulaire de 18F-NaF (107). De plus, les mesures de SUV dans les structures vasculaires sont influencées par la variation de l’activité du 18F-NaF dans le sang. Par conséquent, les mesures de SUV obtenues au niveau de la valve aortique sont divisées par le SUV au niveau de l’OG. L’utilisation de cette région spécifiquement comme valeur de radioactivité dite d’arrière-plan a démontré une meilleure
reproductibilité que d’autres régions testées (± 10% d’erreur vs ± 68% selon la méthode Bland-Altman) (108). Cet ajustement permet d’obtenir une mesure fidèle du ratio de l’activité du 18F-NaF tissulaire par rapport à l’arrière-plan (TBR ; tissue-to-background ratio). Finalement, il est important de mentionner qu’une faible variabilité inter et intra-observateur est observée lors de la mesure du SUV et du TBR (107).

Dweck et collaborateurs furent les premiers à démontrer la faisabilité de l’évaluation de l’activité du 18F-NaF, via la mesure du TBR, chez des patients atteints de SA. Regroupant 101 patients ayant une SA de sévérité différente ou une sclérose aortique ainsi que 20 individus ayant une valve aortique normale, cette étude observa une captation de 18F-NaF plus importante chez les patients atteints de SA et de sclérose aortique, avec une augmentation progressive de l’absorption en fonction de la gravité de la maladie (107). Quelques années plus tard, le même groupe de recherche a démontré que la captation valvulaire du 18F-NaF permet de prédire le développement futur de la SA, évaluée par CT et ETT (109, 110). Selon leurs observations, non seulement la valeur d'absorption tissulaire du 18F-NaF était associée avec des marqueurs histologiques de la calcification active, tels que les concentrations de phosphatase alcaline et d’ostéocalcine, mais elle était également un bon prédicteur de la progression ultérieure du score calcique de la valve aortique suite à un suivi de 1 an (Figure 19A) (110). Par ailleurs, les régions d’absorption tissulaire du 18F-NaF sont différentes de la distribution de la macrocalcification mais semblent concorder avec les nouvelles zones de macrocalcification, illustrant que les informations fournies par le PET/CT sont distinctes et complémentaires (Figure 19B). Par conséquent, l’absorption tissulaire du 18F-NaF obtenue grâce à la PET/CT permet d’obtenir un marqueur de l'activité de calcification au niveau de la valve aortique et de progression ou de développement de la SA.
Figure 19. Tomographie par émission de positons couplée à la tomographie axiale (PET/CT). (A) Une excellente corrélation a été observée entre la captation valvulaire du 18F-NaF (TBR) et le changement du score calcique à 1 an. (B) Vue de la valve aortique chez des patients atteints d’une sclérose aortique et d’une SA modérée (en haut et en bas, respectivement). Sur la CT (à gauche), la macrocalcification apparaît en blanc. La PET/CT (au centre), montre une absorption importante de 18F-NaF (région rouge et jaune) à la fois sus-jacentes et adjacentes aux dépôts de calcium observés sur la CT. La CT effectuée un an plus tard (à droite) montre une accumulation accrue de calcium dans les mêmes régions observées lors de la PET/CT, effectuée un an plus tôt. Tiré de Jenkins et al., 2015 et Dweck et al., 2014 (109, 110).

Récemment, un groupe de recherche a démontré, parallèlement à notre groupe, que des concentrations élevées de Lp(a) et de OxPL-apoB étaient associées à une microcalcification, évaluée par PET/CT, plus importante (56). Dans une cohorte de 80 patients ayant une SA, les patients dans le tertile supérieur de Lp(a) démontrent une captation du 18F-NaF au niveau de la valve aortique plus élevée que les patients se retrouvant dans les tertiles inférieurs, illustrant une microcalcification plus importante. De façon similaire, une captation plus importante du 18F-NaF était observée chez les patients dans le tertile supérieur comparée aux patients dans le tertile inférieur d’OxPL-apoB (Figure 20).
Figure 20. Impact des concentrations de Lp(a) et de OxPL sur la captation du 18F-NaF au niveau de la valve aortique obtenue lors d’une PET/CT. (A et B) Microcalcification selon les concentrations de Lp(a) et d’OxPL-apoB chez des patients atteints de SA. (C) Illustration du PET/CT de patients ayant une microcalcification importante (à gauche), prédissant la progression de la macrocalcification évaluée par CT 2 ans plus tard (à droite). Tiré de Zheng et al., 2019 (56).

Par ailleurs, chez 51 patients ayant effectué une CT deux ans plus tard, la progression médiane du score calcique dans la valve aortique était 3 fois plus rapide dans les tertiles supérieurs de Lp(a) et de OxPL-apoB lorsque comparée aux tertiles inférieurs. De plus, suite à l’ajustement du score calcique au niveau de la valve aortique et des facteurs de risque cardiovasculaire traditionnel au temps initial, des concentrations élevées de Lp(a) et de OxPL-apoB étaient des prédicteurs indépendants de la captation du 18F-NaF et de la progression du score calcique au niveau de la valve aortique. L’association entre la microcalcification de la valve aortique et les concentrations de Lp(a) n’a jamais été évaluée chez des individus sans SA.
Objectifs et hypothèses

Chapitre 1

L'objectif de l’article de synthèse présenté au chapitre 1 est de discuter de l'impact des interventions pharmacologiques et non pharmacologiques sur les concentrations de Lp(a) et de proposer des stratégies pour la prise en charge des patients ayant des concentrations élevées de Lp(a).

Chapitre 2

Le premier objectif de ce chapitre est d’évaluer les concentrations de Lp(a) et de OxPL dans un contexte clinique contemporain chez des patients ayant une SA comparées à un groupe témoin constitué d’individus sans SA. Le second objectif est d’évaluer, avec la PET/CT, la microcalcification au niveau de la valve aortique chez des individus sans SA ayant des concentrations élevées ou faibles de Lp(a).

Nos hypothèses sont que les patients ayant une SA vus en clinique ont des concentrations plus élevées de Lp(a) et d'OxPL que les individus dans le groupe témoin, et que les individus sans SA ayant des concentrations élevées de Lp(a) ont une microcalcification plus importante que les individus ayant des concentrations faibles de Lp(a), résultant ainsi à une calcification future chez les individus ayant des concentrations de Lp(a) élevées.
Chapitre 1 : Lipoprotéine(a) – c’est risqué, mais que faire?

Audrey-Anne Després et Benoit Arsenault

Publié en septembre 2018 dans
Current Cardiovascular Risk Reports

Sous le titre :

Lipoprotein(a)—It Is Risky, but What Do We Do About It?
Résumé

Introduction : La lipoprotéine(a) (Lp[a]) est une particule de lipoprotéine ayant des propriétés pro-inflammatoires, pro-thrombotiques et pro-athérogènes. La Lp(a) se lie et transporte des phospholipides oxydés dans la circulation sanguine. Il est maintenant reconnu qu’une concentration élevée de Lp(a) est l’un des facteurs de risque génétique des maladies coronariennes, des accidents vasculaires cérébraux et de la sténose aortique le plus important. Des concentrations élevées de Lp(a), ou hyperlipoprotéinémie(a), sont associées avec des évènements cardiovasculaires même chez les individus à risque élevé qui atteignent leur objectif de cholestérol à lipoprotéines de faible densité avec des statines.

Revue : Les interventions de modification des habitudes de vie ou les suppléments alimentaires ont peu d’impact sur les concentrations de Lp(a). Néanmoins, chez les individus ayant une hyperlipoprotéinémie(a), l’adhérence aux paramètres idéaux de santé cardiovasculaire (ne pas fumer, alimentation saine, faire de l’exercice, avoir des valeurs normales d’indice de masse corporelle, de tension artérielle, de glycémie et de cholestérol) semblerait réduire le risque cardiovasculaire associé à des concentrations élevées de Lp(a). Les médicaments utilisés en prévention cardiovasculaire, tels que l’inhibiteur de la proprotéine convertase subtilisine/kexine de type 9 et la niacine, procurent une réduction modeste des concentrations de Lp(a). Une thérapie ciblant spécifiquement la Lp(a) est actuellement en développement, et son impact sur le risque cardiovasculaire sera prochainement clarifié.

Conclusion : En l’absence de thérapie ciblant la Lp(a), le contrôle strict des facteurs de risque cardiovasculaire et l’adhérence à de saines habitudes de vie réduisent le risque de maladies cardiovasculaires chez les individus ayant des concentrations élevées de Lp(a).
Abstract

Purpose of Review: Lipoprotein(a) [Lp(a)] is a pro-inflammatory, pro-thrombotic, and pro-atherogenic lipoprotein particle. Lp(a) binds and transports oxidized phospholipids in the bloodstream. It is one of the strongest genetic risk factors for coronary artery disease, stroke, and calcific aortic valve stenosis.

Recent Findings: Elevated Lp(a) levels, or hyperlipoproteinemia(a), is associated with cardiovascular outcomes even in high-risk individuals who achieve their low-density lipoprotein cholesterol target with statins. Lifestyle modification therapy and dietary supplements have little impact on plasma Lp(a) levels. However, in individuals with hyperlipoproteinemia(a), the adherence to ideal cardiovascular health metrics (not smoking, having a healthy diet, being physically active, having a normal body mass index, having a normal blood pressure as well as blood sugar and cholesterol levels) might reduce the cardiovascular risk associated with elevated Lp(a) levels. Cardiovascular drugs such as proprotein convertase subtilisin/kexin type 9 inhibitors and niacin provide modest reductions in Lp(a) levels. Lp(a)-targeted therapies are currently being developed, and their impact on cardiovascular risk is yet to be determined.

Summary: In the absence of approved Lp(a)-targeted therapies, a holistic approach combining strict control of traditional cardiovascular risk factors and the adequate management of lifestyle-related risk factors is likely to significantly reduce cardiovascular risk in patients with hyper-Lp(a).
Lipoprotein(a)—It Is Risky, but What Do We Do About It?

Audrey-Anne Despres1,2 and Benoit Arsenault1,2

1) Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Y-3106, Pavillon Marguerite D’Youville, 2725 chemin Ste-Foy, QC, Québec G1V 4G5, Canada
2) Department of Medicine, Faculty of Medicine, Université Laval, Québec, Canada

\textbf{Address for correspondence}

Benoit Arsenault, PhD
Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec
Y-3106, Pavillon Marguerite D’Youville
2725 chemin Ste-Foy
Québec (QC) Canada
G1V 4G5
T: 418-656-8711 ext. 3498
E: benoit.arsenault@criucpq.ulaval.ca
Introduction

Lipoprotein(a) [Lp(a)] consists of a cholesterol rich lipoprotein particle analogous to low-density lipoprotein (LDL), where apolipoprotein B-100 (the most abundant protein on LDLs) is linked to apo(a) by a disulphide bond. Lp(a) is only found in humans and some Old-World monkeys (1). Contrary to LDL, the Lp(a) particle is an important carrier of oxidized phospholipids (OxPL), which bind to both the apo(a) and the LDL moieties of Lp(a). OxPLs are key drivers of several pro-inflammatory, pro-thrombotic and pro-calcifying processes (2).

The LPA gene (the gene that encodes apo[a]) is highly polymorphic and one of the strongest determinants of Lp(a) level is a copy number variation at this locus encoding KIV-2 repeats (3). It has been suggested that this polymorphism significantly influences Lp(a) levels, for instance by altering its hepatic secretion rate. As a result, it has been estimated that up to 70-90% of the variance in circulating Lp(a) may be explained by genetic variations at the LPA locus (4). Hyperlipoproteinemia(a), or hyper-Lp(a), is a genetic dyslipidemia that is properly diagnosed only in rare circumstances. Lp(a) was discovered by Berg in the sixties (5).

Although early studies revealed significant associations between plasma Lp(a) levels and cardiovascular disease (CVD) risk, the research community struggled to develop a standardized assay to adequately measure Lp(a) levels (likely because of its polymorphic nature). Consequently, many follow-up studies in the 1990’s and early 2000’s at worst failed to confirm the significant association between Lp(a) levels and CVD risk and at best reported modest associations (6). Recent developments in genotyping and next-generation sequencing helped revive the enthusiasm for Lp(a) as a very likely causal risk factor for residual CVD risk, even in patients with low LDL cholesterol levels treated with statins (3, 7). One of those studies led by Emdin et al. (8) described the phenotypic characterization of patients with genetically low Lp(a) levels. In this study performed in the UK Biobank dataset, genetically low Lp(a) was causally linked with: a 29% reduction in coronary heart disease (CHD) risk; a 13% reduction in stroke risk; a 9% reduction in chronic kidney disease risk; a 31% reduction in peripheral vascular disease risk; a 17% reduction in heart failure risk, and a 37% reduction in calcific aortic valve stenosis (CAVS) risk. Recently, a large genome-wide association study of 3,099 statin-treated individuals with CHD and 7,681 controls (also treated with statins) revealed a polymorphism at the LPA locus (rs10455872) as the only genome-wide
significant variant associated with residual CVD risk in this cohort (9). These results confirmed Lp(a) as a therapeutic target of interest for residuals CVD risk. However, despite being a strong and causal risk factor for CVD risk, comprehensive and actionable guidelines for the management of patients with hyper-Lp(a) are not available, which may explain, together with the lack of knowledge about Lp(a) from most health care professionals, why Lp(a) is not routinely assessed in patients at high CVD risk. The objective of this brief review article is to discuss the impact of pharmacological and non-pharmacological interventions on Lp(a) levels and to put forward strategies for the management of patients with hyper-Lp(a).

Impact of dietary interventions on plasma Lipoprotein(a) levels

Over the past few years, several dietary intervention studies have been performed to evaluate the impact of lifestyle modification therapy on Lp(a) levels. Due to marked heterogeneity in terms of study designs, food intake and diet composition, study populations and outcomes, nutritional interventions reported inconsistent results with regards to their impact on Lp(a) levels. Although diet-induced weight loss has a positive effect on most if not all cardiometabolic risk factors, many trials revealed increased Lp(a) levels following moderate caloric restriction. For instance, in a recent prospective study of two different cohorts of individuals with obesity followed for 8 weeks, increases in Lp(a) levels (14.8 and 13.5 nmol/L [approximately 5.9 and 5.4 mg/dL], in cohort 1 and 2, respectively, p<0.05) were observed after following a diet very low in energy (750 kcal/day) consisting of two meal replacements and a small dinner daily (10). Changes in Lp(a) levels were positively correlated with baseline Lp(a) levels in this study. The type and content of macronutrients in the diet may also be an important determinant of the impact of diet on Lp(a) levels. At least four studies have reported moderate elevations in Lp(a) levels after short-term isocaloric low-fat diets (between 2.6 and 7.91 mg/dL) (11-14). Results of another study suggested that a higher intake of monounsaturated fatty acids slightly increased Lp(a) levels compared to a diet high in saturated fatty acids (15). The OMNI heart trial compared the impact of 3 diets (high-carbohydrate, high-protein and high in unsaturated fats) on Lp(a) levels (16). All three diets significantly increased Lp(a) levels. However, changes in Lp(a) were rather modest (2.1 to 4.7 mg/dL) and marked heterogeneity among black and white participants was observed. In another study, consumption of a plant-based diet during 4 weeks resulted in a 16%
reduction in Lp(a) levels from baseline in a sample of 31 individuals characterized as overweight or obese (17). Investigators who have measured Lp(a) levels in nutritional intervention studies aiming at reducing LDL cholesterol levels (with portfolio diet, almonds, flaxseed, etc.) also found little benefits of these interventions with regards to Lp(a) levels (18-20).

The impact of several dietary supplements on plasma Lp(a) levels has been reported. Systematic reviews of the literature and meta-analyses of available randomized controlled trials (RCTs) showed that garlic and soy isoflavone supplements did not alter Lp(a) (21, 22). Other dietary supplements (Coenzyme Q10 and L-carnitine) could positively influence Lp(a) concentrations. In a recent meta-analysis including six RCTs, Sahebkar et al. observed that Coenzyme Q10 supplementation led to a modest decrease in plasma Lp(a) concentrations, which were especially observed in participants with Lp(a) equal or above 30 mg/dL (23). Moreover, a significant reduction (8.82 mg/dL on average) has been observed in a meta-analysis of seven RCTs that assessed the impact of L-carnitine supplementation on Lp(a) levels (24). It is important to point out that although some supplements were found to lower Lp(a) levels, except for niacin (discussed below), no dietary supplements, to our knowledge, have been found to generate clinically meaningful and sustained reductions in Lp(a) levels in patients with hyper-Lp(a). Additionally, most if not all of the studies described above were not specifically designed to determine the impact of diet on Lp(a) levels a priori and the meta-analyses of RCTs compared studies with different assays to measure Lp(a) levels. Most of these studies are secondary analyses from trials conducted for other purposes and many of these did not include a control group. The impact of specific dietary patterns on Lp(a) levels in patients with hyper-Lp(a) remains poorly investigated. Additionally, although different types of diet could be associated with increases or decreases in Lp(a), their impact on Lp(a) appears to be marginal compared to other risk factors (LDL cholesterol levels or apoB levels, insulin sensitivity, inflammatory status, etc.) and their efficacy or clinical usefulness should not be judged solely based on their impact on Lp(a) levels.
Does a healthy lifestyle modulate cardiovascular risk associated with hyper-Lp(a)?

In 2009, the American Heart Association (AHA) introduced the notion of “ideal cardiovascular health”, which is based on seven potentially modifiable risk factors for CVD: not smoking, having a healthy diet (high in fruit and vegetables, fish, fiber-rich whole grains and low in sodium and sugar-sweetened beverages), being physically active, having a normal body mass index, having a normal blood pressure as well as blood sugar and cholesterol levels. Since then, the results of a handful of large scale prospective studies have suggested that, assuming a causal relationship between these risk factors and the risk of events, meeting the criteria of the so-called AHA’s Life Simple 7 could help reduce CVD risk by up to 90% in men and women (25-27). These reports have also underscored that only between 0.1 and 5% of the general population actually achieve ideal cardiovascular health, which potentially explains why CVD remains the leading cause of mortality worldwide. We recently published the results of an investigation that aimed at determining whether AHA’s Simple 7 risk factors could modulate the risk associated with hyper-Lp(a) in the EPIC-Norfolk prospective population study (28). Participants included in this study resided in the area of Norfolk, UK. We measured Lp(a) levels and the Lp(a)-raising variant rs10455872 in 14,051 participants who had completed a detailed health and lifestyle questionnaire and underwent a medical examination at baseline. During a mean follow-up of 11.5 years, 1732 cardiovascular events were reported. As expected, Lp(a) levels were comparable across most metrics included in the cardiovascular health score. This observation supports the notion that Lp(a) levels are largely explained by variations at the LPA locus on chromosome 6 rather than by lifestyle or clinical risk factors. Our results showed that among patients with high Lp(a) (≥50 mg/dL), those with ideal cardiovascular health (top tertile of the population distribution) had a relative risk of CVD of 0.33 (95% CI, 0.17-0.63, p<0.001) compared to those with poor cardiovascular health. Participants with low Lp(a) levels and ideal cardiovascular health were those with the lowest CVD event rate (hazard ratio = 0.19, 95% CI, 0.12-0.31, p<0.001). Upon investigation of CVD risk in carriers of the Lp(a)-raising G allele of rs10455872, we found that similar to those with high Lp(a) levels, carriers of the G-allele were at substantially lower CVD risk if they were characterized by ideal cardiovascular health.
We believe that these results have important clinical implications. First, health care professionals are often reluctant to measure Lp(a) levels in their high-risk patient because they have too few options to directly target Lp(a) levels, our findings should encourage them to measure Lp(a) levels at least once in their patients and reinforce the notion that a healthy lifestyle can substantially reduce CVD risk associated with hyper-Lp(a). Second, our study results highlight the importance of assessing and controlling both clinical and lifestyle-related cardiovascular risk factors and underscores the importance of promoting physical activity and a healthy diet in the management of patients and families with hyper-Lp(a) (Figure).

Impact of cardiovascular drugs on plasma Lipoprotein(a) levels

Statins

Lp(a) levels are associated with the risk of future cardiovascular events in primary and secondary prevention and significantly contribute to the residuals risk (29, 30). Increasing evidence suggest that statin therapy might significantly raise Lp(a) levels in humans. In the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) trial, the impact of torcetrapib treatment on cardiovascular outcomes was tested in patients treated with four doses of atorvastatin (10, 20, 40 and 80 mg/day). Our recent analysis of the ILLUMINATE trial revealed that Lp(a) levels were dose-dependently increased with atorvastatin dose (31). In a meta-analysis of 7 statin trials, Yeang et al. (32) showed that statin therapy was associated with an 11% increase in Lp(a) levels. Despite this unexpected finding, it must be emphasized that the reduction in the number of circulating atherogenic lipoproteins with statin therapy significantly outweighs this potential undesirable effect of statin therapy in terms of cardiovascular risk reduction and that statin therapy should be considered for individuals with hyper-Lp(a), especially if they have other CVD risk factors. For instance, in the Heart Protection Study, Hopewell et al. (33) documented the cardiovascular benefits of simvastatin therapy compared to placebo in patients with vs. without Lp(a)-raising variants. Their analysis revealed that the relative risk reduction associated with simvastatin therapy was 27.6% and 20.2% in patients with vs. without Lp(a)-raising variants, respectively. The corresponding absolute risk reduction were 6.5% and
4.3%, thereby suggesting that patients with hyper-Lp(a) may significantly benefit from cardiovascular drugs such as statins.

Niacin

It is now well-accepted that nicotinic acid (niacin) might be one of the only supplements/drugs associated with significant decreases in plasma Lp(a) levels. In meta-analysis of 14 RCTs including more than 9000 participants, niacin treatment was associated with an average Lp(a) reduction of 23%, which did not appear to be dose-dependent (34). The Lp(a)-lowering effect of niacin could depend on apo(a) isoform size. In a post-hoc analysis of Heart Protection Study 2 – Treatment of HDL to Reduce the Incidence of Vascular Events (HPS2-THRIVE), a RCT comparing the impact of niacin-laropiprant vs. placebo in patients at high cardiovascular risk, the mean reduction of Lp(a) levels was 31% (35). This reduction appeared to be attenuated across quintiles with higher reductions (50%) observed in participants with the largest isoform size (lowest Lp[a] levels) and the lowest (16%) reduction in participants with the smallest isoform size (highest Lp[a] levels). Absolute Lp(a) reductions however were highest in patients with the smallest isoform size/highest Lp(a) levels. The precise mechanisms by which niacin affects Lp(a) metabolism still remain unclear but could be explained by alterations in both the production and catabolic rate of apo(a). A kinetic study by Croyal *et al.* (36) demonstrated a 37% decrease in the fractional catabolic rate (FCR) of apo(a) after 8 weeks of niacin treatment, as well as a 50% reduction in production rate of apo(a) in obese men, consistent with niacin repressing the LPA gene. Although significant reductions in Lp(a) levels were observed with niacin, it must be emphasized that two recently published large CVOTs (AIM-HIGH and HPS2-THRIVE) did not report any benefits in terms of major vascular event reductions with niacin (37, 38). These studies also revealed important side effects with niacin treatment such as a higher risk of new-onset diabetes, disturbed diabetes control, gastrointestinal, musculoskeletal and skin-related serious adverse events, as well as infections and bleeding risk, making adherence to treatment challenging. The impact of niacin on cardiovascular outcomes in patients with hyper-Lp(a) has not been documented.
PCSK9 inhibitors

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a liver-derived inactive proprotein convertase that circulates in the bloodstream either free or bound to atherogenic lipoprotein particles such as LDL and Lp(a) (39). PCSK9 binds to and targets the LDL receptor (LDLR) for lysosomal degradation thereby inhibiting its recycling at the liver cell surface. Genetic association studies showed that individuals carrying loss-of-function at the PCSK9 locus were at reduced cardiovascular risk (40). In parallel, patients with a high risk of CVD treated with PCSK9 neutralizing antibodies were also found to be at lower cardiovascular risk compared to those treated with placebo in two large CVOTs (41). We also recently showed in a large population-based study that individuals carrying the genetic variant PCSK9 R46L (associated with lower LDL cholesterol levels) are also characterized by lower levels of Lp(a) compared with noncarriers (42). Comparable results were also reported by Langsted et al. (43) with the Copenhagen city studies. These observations suggest that PCSK9 inhibitors could be effective for reducing CVD risk associated with high Lp(a) levels although this remains to be formally tested. PCSK9 inhibitors also lower Lp(a) levels by 20-30% (44). Although, to our knowledge, no CVOTs documenting the long-term cardiovascular effects of PCSK9 inhibitors in patients with hyper-Lp(a) are currently planned, an imaging trial, the ANITSCHKOW trial, which is currently underway (NCT02729025) will document the impact of the PCSK9 inhibitor evolocumab on arterial wall inflammation measured by fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) specifically in patients with elevated Lp(a) levels (>50mg/dL). In a recent study, patients with elevated Lp(a) levels were found to be characterized by higher arterial wall inflammation measured by FDG-PET/CT (45). The biological mechanisms through which PCSK9 modulate plasma Lp(a) levels are still unclear and extend beyond the scope of this article. However several lines of investigation suggest that the LDLR could contribute to the clearance of plasma Lp(a) levels. Nevertheless, this point is debated, in part because statin treatment, which increases LDLR density at the surface of hepatocytes, does not reduce Lp(a) levels. In 2017, Reyes-Soffer et al. (46) observed a trend for an increase in the FCR of apo(a) (+24.6%, p=0.09) with no change in production of apo(a) following PCSK9 inhibition with alirocumab in 20 healthy men not receiving lipid-lowering therapy. More recently, Watts et al. (47) investigated the impact of the PCSK9 inhibitor evolocumab (as monotherapy and as
dual therapy with atorvastatin) on Lp(a) kinetics in 63 healthy men. They found that as monotherapy, evolucumab significantly reduced the Lp(a)-apo(a) production (-36%, p<0.0001) and had no effect on FCR of Lp(a)-apo(a). In contrast, dual therapy increased the FCR of Lp(a)-apo(a) (+59%, p<0.001), without impacting the production of Lp(a)-apo(a). Interestingly, in this study neither statin nor evolucumab alone increased the FCR of Lp(a)-apo(a).

Lp(a)-targeted therapies

To the best of our knowledge, only one compound (an antisense oligonucleotide [ASO] targeting LPA currently developed by Akcea and Novartis) specifically designed to lower Lp(a) levels has been tested in a RCT. An ASOs is a single-stranded oligonucleotide that binds with high affinity to the targeted sense mRNA through Watson-Crick base pairing to inhibit protein production. AKCEA-APO(A)LRX is a second generation ASO that features a N-acetylgalactosamine (GalNAc) conjugation, which facilitates the uptake of this compound by liver cells via the asialoglycoprotein receptor and makes it a very potent Lp(a) inhibitor. Results of a phase 2 study documenting the impact of AKCEA-APO(A)LRX in healthy individuals with Lp(a) levels equal or above 60 mg/dL revealed dose-response reduction in plasma Lp(a) levels up to 80-90% (48). Reductions in plasma levels of OxPL were also documented. A phase 2 study documenting the effect of 5 doses of this compound in patients with atherosclerotic CVD and Lp(a) levels of at least 60 mg/dL is currently underway (NCT03070782). Ultimately, the long-term impact of this ASO will be tested in CVOTs. These trials will be crucial to determine conclusively whether or not Lp(a) is a causal risk factor for CVD that can be targeted but most importantly, to document that Lp(a) reductions in patients at high CVD risk optimally treated with lipid-lowering drugs will lead to a reduction in cardiovascular outcomes. The usefulness of cardiovascular drugs is primarily assessed by their benefit-to-risk ratio. For Lp(a), genetic association studies revealed potential cardiovascular benefits associated with lifelong “reductions” in Lp(a) levels. Whether these reductions come at the expense of an increased risk of developing other unanticipated diseases or adverse effects is currently unknown. Recently, a study seeking to identify genes associated with human longevity using genome-wide association meta-analysis of 606,059 parents’ survival identified variants associated with lower Lp(a) levels as
significant predictors of longevity. This finding, combined with the fact that few, if any, side-effects were reported with short-term administration of AKCEA-APO(A)LRX provides reassurance with regards to the potential benefit to risk ratio associated with pharmacological Lp(a) reductions (49). However, it does no guarantee so long-term CVOTs will be needed to fully appreciate the potential benefits of pharmacological Lp(a) reductions.

Management of patients with hyper-Lp(a): the way forward

In 2010, a European Atherosclerosis Society (EAS) Consensus Panel recommended that Lp(a) levels should be measured in individuals with premature CVD (or with a family history of premature CVD), familial hypercholesterolemia, recurrent CVD despite statin treatment or intermediate cardiovascular risk (50). The assessment of Lp(a) levels (at least once in a lifetime) in patients with a family history of hyper-Lp(a) and patients with CAVS should also be further investigated. However, even in these populations, Lp(a) is currently not routinely measured. The lack of ICD-10 codes specific to hyper-Lp(a), of a consensus on a standardized Lp(a) assay, combined with the unawareness of Lp(a) amongst health care providers are probably factors that could explain why Lp(a) is not routinely assessed. Moreover, a clinically validated specific therapy against Lp(a) is not (yet) available. Recently, the Centers for Disease Control approved the new ICD-10 codes specific to hyper-Lp(a) in response to the Lipoprotein(a) Foundation application (https://www.lipoproteinafoundation.org). These new ICD codes will help clinicians document in a formal manner the presence of hyper-Lp(a) and help researchers identify patients with hyper-Lp(a) using electronic medical records. Although the lack of outcomes data with targeted Lp(a) therapies and a clinically validated Lp(a) assay still represent barriers to the routine assessment of Lp(a) levels, there is enough evidence to support the assessment of Lp(a) levels in specific high-risk cases discussed above. In the absence of approved Lp(a)-targeted therapies, an holistic approach combining strict control of traditional CVD risk factors (hypercholesterolemia, hypertension, insulin resistance, etc.) and the adequate management of lifestyle-related risk factors (a healthy diet, physical activity, smoking, etc.) is likely to significantly reduce cardiovascular risk in patients with hyper-Lp(a).
Bibliographie

17. Najjar RS, Moore CE and Montgomery BD. Consumption of a Defined, Plant-Based Diet Reduces Lipoprotein(a), Inflammation, and Other Atherogenic Lipoproteins and Particles Within Four Weeks. Clinical cardiology. 2018.

Figure

Figure 21. Schematic representation of the possible interaction between lifestyle-associated and clinical risk factors for cardiovascular disease and hyperlipoproteinemia(a) for cardiovascular disease risk prediction.
Chapitre 2 : Lipoprotéine(a), phospholipides oxydés et microcalcification de la valve aortique évaluée par PET/CT

Audrey-Anne Després, BSc, Nicolas Perrot, MSc, Anthony Poulin, MD, Lionel Tastet, MSc, Mylène Shen, MSc, Hao Yu Chen, MSc, Raphaëlle Bourgeois, MSc, Mikaël Trottier, MD, Michel Tessier, MD, Jean Guimond, MD, Maxime Nadeau, tim, James C. Engert, PhD, Sébastien Thériault, MD, Yohan Bossé, PhD, Joseph L. Witztum, MD, Patrick Couture, MD, Patrick Mathieu, MD, Marc R. Dweck, MD, Sotirios Tsimikas, MD, George Thanassoulis, MD, Philippe Pibarot, PhD, DVM, Marie-Annick Clavel, PhD, DVM, et Benoit J. Arsenault, PhD

Publié en mai 2019 dans le

Canadien Journal of Cardiology Open

Sous le titre :

Lipoprotein(a), oxidized phospholipids, and aortic valve microcalcification assessed by 18F-NaF PET/CT
Résumé

Introduction : La lipoprotéine(a) (Lp[a]), la principale lipoprotéine assurant le transport des phospholipides oxydés (OxPLs), est un facteur de risque génétique bien établi de la sténose aortique calcifiante (SA). On ignore si la présence de concentrations élevées de Lp(a) est un facteur prédictif de la microcalcification de la valve aortique chez les individus non atteints de SA. Notre objectif était d'estimer la prévalence de taux élevés de Lp(a) et de OxPLs chez des patients atteints de SA et de déterminer si la microcalcification de la valve aortique est plus marquée chez les individus sans SA affichant des taux élevés de Lp(a).

Méthodes : Nous avons recruté 214 patients atteints de SA à Montréal et 174 patients atteints de SA et 108 individus témoins à Québec (Canada). Dans un groupe d’individus présentant des taux de Lp(a) élevés (≥ 75 nmol/l, n = 27) ou faibles (< 75 nmol/l, n = 28), une tomographie par émission de positons couplée à une tomographie axiale a été réalisée en vue de comparer la valeur moyenne du rapport signal/bruit (TBR ; tissue-to-background ratio) de la valve aortique.

Résultats : Les patients atteints de SA présentaient des taux de Lp(a) plus élevés de 62,0 % (médiane = 28,7, intervalle interquartile [de 8,2 à 116,6] vs 10,9 [de 3,6 à 28,8] nmol/l, p < 0,0001), des taux de OxPLs-apolipoprotéine-B plus élevés de 50 % (2,2 [de 1,3 à 6,0] vs 1,1 [de 0,7 à 2,6] nmol/l, p < 0,0001) et des taux de OxPLs-apolipoprotéine(a) plus élevés de 69,9 % (7,3 [de 1,8 à 28,4] vs 2,2 [de 0,8 à 8,4] nmol/l, p < 0,0001) comparativement aux individus non atteints de SA (toutes les valeurs p < 0,0001). Les individus non atteints de SA mais présentant des taux élevés de Lp(a) avaient un TBR moyen supérieur de 40 % à celui des individus affichant un faible taux de Lp(a) (TBR moyen = 1,25 ± 0,23 vs 1,15 ± 0,11, p = 0,02).

Conclusions : Des taux élevés de Lp(a) et de OxPLs sont associés à la prévalence de la SA chez des patients évalués par échocardiographie. Chez les individus présentant un taux élevé de Lp(a), les signes d'une microcalcification de la valve aortique, décelés par tomographie par émission de positons couplée à la tomographie axiale sont présents avant l'apparition des manifestations cliniques de la SA.
Abstract

Background: Lipoprotein(a) (Lp[a]) is the preferential lipoprotein carrier of oxidized phospholipids (OxPLs) and a well-established genetic risk factor for calcific aortic valve stenosis (CAVS). Whether Lp(a) predicts aortic valve microcalcification in individuals without CAVS is unknown. Our objective was to estimate the prevalence of elevated Lp(a) and OxPL levels in patients with CAVS and to determine if individuals with elevated Lp(a) but without CAVS have higher aortic valve microcalcification.

Methods: We recruited 214 patients with CAVS from Montreal and 174 patients with CAVS and 108 controls from Québec City, Canada. In a group of individuals with high (≥75 nmol/L, n = 27) or low (<75 nmol/L, n = 28) Lp(a) levels, positron emission tomography/computed tomography was performed to determine the difference in mean tissue-to-background ratio (TBR) of the aortic valve.

Results: Patients with CAVS had 62.0% higher Lp(a) (median = 28.7, interquartile range [8.2-116.6] vs 10.9 [3.6-28.8] nmol/L, P < 0.0001), 50% higher OxPL-apolipoprotein-B (2.2 [1.3-6.0] vs 1.1 [0.7-2.6] nmol/L, P < 0.0001), and 69.9% higher OxPL-apolipoprotein(a) (7.3 [1.8-28.4] vs 2.2 [0.8-8.4] nmol/L, P < 0.0001) levels compared with individuals without CAVS (all P < 0.0001). Individuals without CAVS but elevated Lp(a) had 40% higher mean TBR compared with individuals with low Lp(a) levels (mean TBR = 1.25 ± 0.23 vs 1.15 ± 0.11, P = 0.02).

Conclusions: Elevated Lp(a) and OxPL levels are associated with prevalent CAVS in patients studied in an echocardiography laboratory setting. In individuals with elevated Lp(a), evidence of aortic valve microcalcification by positron emission tomography/computed tomography is present before the development of clinically manifested CAVS.
Lipoprotein(a), oxidized phospholipids, and aortic valve microcalcification assessed by 18F-NaF PET/CT

Brief title: Lipoprotein(a), oxidized phospholipids and aortic valve microcalcification

Audrey-Anne Després, BSc1,2*, Nicolas Perrot, MSc1,2*, Anthony Poulin, MD1, Lionel Tastet, MSc1,2, Mylène Shen, MSc1,2, Hao Yu Chen, MSc3, Raphaëlle Bourgeois, MSc1,2, Mikaël Trottier, MD1, Michel Tessier, MD1, Jean Guimond, MD1, Maxime Nadeau, tim1, James C. Engert, PhD3, Sébastien Thériault, MD1,4, Yohan Bossé, PhD1,5, Joseph L. Witztum, MD6, Patrick Couture, MD2,7, Patrick Mathieu, MD1,8, Marc R. Dweck, MD9, Sotirios Tsimikas, MD10, George Thanassoulis, MD3, Philippe Pibarot, PhD, DVM1,2, Marie-Annick Clavel, PhD, DVM1,2, and Benoit J. Arsenault, PhD1,2**

Total word count: 3315 (excluding abstract, tables and references)

1) Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Canada
2) Department of Medicine, Faculty of Medicine, Université Laval, Québec (QC), Canada
3) McGill University Health Research Center, Montreal (QC), Canada
4) Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec (QC), Canada
5) Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec (QC), Canada
6) Department of Medicine, University of California San Diego, La Jolla (CA), USA
7) Centre de recherche du CHU de Québec, QC, Canada
8) Department of Surgery, Faculty of Medicine, Université Laval, Québec (QC), Canada
9) Centre for Cardiovascular Science, University of Edinburgh, UK
10) Division of Cardiovascular Diseases, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla (CA), USA

Disclosures
Dr. Arsenault holds a junior scholar award from the Fonds de recherche du Québec: Santé (FRQS) and has received research funding from the Canadian Institutes of Health Research (FRN155226 and FRN149068), Pfizer, Merck and Ionis Pharmaceuticals. Dr. Clavel and Dr. Thériault hold a junior scholar award from the FRQS. Ms. Després is supported by a master’s training award from the FRQS. Dr. Witztum is a consultant for Ionis Pharmaceuticals, and co-founder of Oxitope, Inc. Dr. Mathieu holds a FRQS Research Chair on the Pathobiology of Calcific Aortic Valve Disease. Dr. Tsimikas is a co-inventor of and receives royalties from patents owned by the University of California San Diego on
oxidation-specific antibodies, is a co-founder of Oxitope, Inc, consultant to Boston Heart Diagnostics and has a dual appointment at UCSD and Ionis Pharmaceuticals, Inc. Dr. Tsimikas is supported in part by NIH grants, P01-HL088093, P01-HL055798, R01-HL106579, R01-HL078610, and R01-HL124174. The other authors report no disclosures. Dr. Thanassoulis is a Research Scholar from the FRQS and is partially supported by R01 HL128550 from the National Institutes of Health, as well as grants from the CIHR and HSFC. George Thanassoulis has received consulting fees from IONIS Pharmaceuticals and has participated in advisory boards for Amgen and Sanofi.

Funding
This study was supported by grants from the Canadian Institutes of Health Research (CIHR) (FRN149068 and FRN155226), by the Fondation de l'IUCPQ, to Dr. Arsenault and by a grant from Ionis Pharmaceuticals awarded to Drs. Arsenault and Thanassoulis.

AAD and NP contributed equally to the content of this manuscript.

Address for correspondence
Benoit Arsenault, PhD
Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec
Y-3106, Pavillon Marguerite D'Youville
2725 chemin Ste-Foy
Québec (QC) Canada
G1V 4G5
T: 418-656-8711 ext. 3498
E: benoit.arsenault@criucpq.ulaval.ca
Introduction

Calcific aortic valve stenosis (CAVS) is the most common form of valvular heart disease, and its prevalence is steadily increasing in high-income countries, affecting approximately 3% of the population aged more than 65 years\(^1\). The only effective treatment for CAVS is aortic valve replacement (AVR). Genetic variations at the \(LPA\) locus on chromosome 6 are associated with elevated plasma lipoprotein(a) \([\text{Lp(a)}]\) levels and the risk of aortic valve calcification (AVC) accumulation and CAVS in the general population\(^2,3,4\). It has been hypothesized that oxidized phospholipids (OxPLs) transported by apolipoprotein (apo)-B–containing lipoproteins (OxPL-apoB and OxPL-apo[a]) are pathologically implicated\(^5,6,7,8\). Although Lp(a) and OxPL levels are associated with CAVS risk in the general population\(^9,10\), whether Lp(a) and OxPL levels are associated with CAVS presence or severity in patients with established CAVS followed clinically in echocardiography laboratories without AVR is currently unknown. Although genetic variations at the \(LPA\) locus have been linked with macroscopic AVC deposits on computed tomography (CT) and Lp(a) levels linked with AVC accumulation in patients with familial hypercholesterolemia\(^2,11\), whether elevated Lp(a) or OxPL levels may be associated with early developing microcalcification in patients without CAVS is unknown.

Studies have shown that CT is a highly sensitive technique for the assessment of established macroscopic deposits of AVC. However, CT does not quantify early valve calcification (often referred to as “microcalcification”)\(^12\). Positron emission tomography (PET)-CT imaging is accurate and reproducible to detect and quantify inflammation (18F-fluorodeoxyglucose uptake) and developing microcalcification activity (18F-sodium fluoride [NaF] uptake) into aortic valve hydroxyapatite\(^13,14,15,16\), and the measurement of valvular 18F-NaF uptake by PET/CT provides a novel biomarker of early disease activity and progression. This new imaging biomarker provides important incremental value to optimally study the association between Lp(a) and OxPL on CAVS pathobiology. Whether individuals with high Lp(a) levels are characterized by higher aortic valve microcalcification is currently unknown.
Our first objective was to determine whether patients with established CAVS actively followed clinically by echocardiography, but without AVR, had higher Lp(a), OxPL-apoB, and OxPL-apo(a) levels compared with individuals without CAVS. Our second objective was to determine whether Lp(a), OxPL-apoB, and OxPL-apo(a) were associated with CAVS severity as assessed by echocardiography. Third, we sought to determine, in individuals without CAVS, whether those with elevated Lp(a) levels were characterized by aortic valve microcalcification assessed by 18F-NaF PET/CT. Finally, to inform the future development of Lp(a) and OxPL-lowering therapies, we sought to identify the number of patients with CAVS with high Lp(a) above certain thresholds in contemporary clinical settings.

Methods

Study participants

A series of consecutive patients with mild to severe CAVS who did not undergo AVR were recruited at the echocardiography laboratory at the Québec Heart and Lung Institute (QHLI) and the McGill University Health Center. Exclusion criteria included the presence of mitral valve stenosis, mitral insufficiency (moderate or more), aortic insufficiency (moderate or more), and heart failure (ejection fraction < 40%). Patients were excluded if they had CAVS of rheumatic etiology or any type of cancer that required radiotherapy in the thoracic area (breast, trachea, bronchus, or lung cancer) before the diagnosis of CAVS. Women were also excluded if they were pregnant or lactating. At the QHLI, monthly interrupted time series were performed to recruit individuals without CAVS undergoing Doppler echocardiography (controls with normal aortic valves). Additional controls were also recruited through the echocardiography laboratory and advertisement at the QHLI. Each participant with or without CAVS completed detailed questionnaires about their health status, medication, cardiovascular history, family history, and ethnic origins. Previous and current medical history included history of smoking, documented diagnoses of hypertension (patients receiving antihypertensive medications or having known but untreated hypertension [blood pressure ≥ 140/90 mm Hg]), diabetes (fasting glucose ≥ 7 mmol/L or treatment with antidiabetic medication), and detailed information on current medication was collected. Body weight, height, and waist circumference were measured following standardized procedures. Blood pressure and heart rates were also assessed. Peak aortic jet velocity, aortic valve area,
peak and mean transvalvular gradients, and aortic valve morphology were measured by Doppler echocardiography. Aortic valve calcium burden was semiquantitatively assessed on echocardiography by cardiologists blinded to patients’ Lp(a) levels and categorized as mild, moderate, or severe according to the criteria proposed by Rosenhek et al. The study protocols were approved by the Ethics Committees of the 2 institutions, and all patients signed a written informed consent.

Assessment of aortic valve microcalcification by 18F-NaF PET/CT and macrocalcification by CT

Aortic valve microcalcification was assessed in a second cohort of participants without CAVS. All participants who underwent 18F-NaF PET/CT had plasma creatinine levels > 30 μmol/L (assessed < 2 weeks before PET/CT). 18F-NaF PET and CT were performed on integrated PET/CT scanners (GE Discovery RX16; GE Healthcare, Chicago, IL). Doses of 125 MBq of 18F-NaF were injected intravenously. PET scanning started after a 60-minute uptake period for a 30-minute bedtime. A CT scan for attenuation correction was first performed (low-dose 120 kV, 10 mA). Then, 2 CT scans (low-dose 120 kV, 150 mA) were performed centered over the aortic valve, one without contrast followed by a second one after injection of 70 mL of isomolar contrast medium. Analysis of AVC and NaF uptake was performed offline on a dedicated platform (OsiriX MD, Pixmeo SARL, Bernex, Switzerland). AVC was measured on noncontrast electrocardiogram-gated breath-hold CT scans and expressed in Agatston units. PET and contrast CT images were reoriented into the plane of the aortic valve, and circular regions of interest were drawn on adjacent 3-mm slices from the ascending aorta to the left ventricular outflow tract to assess the entire valve. The mean and maximum standard uptake values were calculated for each slice. The 2 highest scores from contiguous slices were averaged and corrected for blood pool activity (left atrium) to provide mean tissue-to-background ratios (TBRs). These images were analyzed by an investigator blinded to all clinical and biomarker data.

Laboratory measurements

Nonfasting plasma samples were collected in ethylenediaminetetraacetic acid, aliquoted into microtubes, and stored at −80°C until analysis. Plasma total cholesterol, triglyceride, high-density lipoprotein cholesterol, and glucose were measured using colorimetric enzymatic
assays (Roche Diagnostics, Indianapolis, IN). Low-density lipoprotein cholesterol concentration was calculated using the Friedewald formula. Plasma Lp(a) levels were measured by turbidimetric assay using the Tina-quant Lipoprotein(a) Gen.2 system (Cobas integra 400/800, Roche Diagnostics, Mannheim, Germany) and by a chemiluminescent immunoassay developed by Tsimikas et al21. OxPL-apoB and OxPL-apo(a) were measured with chemiluminescent immunoassays as previously described22. The assay methodology is unchanged, but the calibrators were modified to allow reporting of units in molar concentration (nmol/L).

Statistical analyses
Unpaired Student t tests and chi-square tests were respectively used to assess differences between continuous (on log-transformed values) and categorical clinical variables in patients with versus without CAVS. Spearman correlation coefficients and 1-way analyses of variance were performed to assess the relationship between CAVS severity and Lp(a) and OxPL levels. Unpaired Student t tests were also used to assess the differences in mean TBR, OxPL-apoB, and OxPL-apo(a) in patients with versus without elevated Lp(a) levels (on log-transformed values). TBR data of participants who deviated from the median by more than 3 standard deviation units were not included in the final analyses. Analyses of variance were used to test the differences in log-transformed Lp(a), OxPL-apoB, and OxPL-apo(a) according to estimated aortic valve calcium measured by echocardiography (mild, moderate, or severe). All statistical analyses were performed with SAS version 9.3 (SAS Institute Inc, Cary, NC), and a P value < 0.05 was considered statistically significant.

Results
Clinical characteristics of patients with and without CAVS are presented in Table 1. Patients with CAVS were on average slightly older than controls and had a more deteriorated cardiometabolic risk profile. Lp(a), OxPL-apoB, and OxPL-apo(a) levels in patients with versus without CAVS of the Quebec City cohort are presented in Figure 1. Figure 1 also presents the distribution of these biomarkers in patients with versus without CAVS. Compared with individuals without CAVS, patients with CAVS had higher Lp(a) (53.4\%), OxPL-apoB (51.1\%), and OxPL-apo(a) (59.6\%). Mean Lp(a) (47.5 [interquartile range {IQR}, 6.3-70.3] nmol/L), OxPL-apoB (3.1 [IQR, 1.0-4.0] nmol/L), and OxPL-apo(a) (9.1
[IQR, 1.2-15.3] nmol/L) in patients from Montreal were also higher than in controls (all \(P < 0.05 \)).

In patients with CAVS, we found no evidence that Lp(a) was associated with CAVS severity. Table 2 presents the association between Lp(a), OxPL-apoB, and OxPL-apo(a) and CAVS severity criteria (peak aortic jet velocity, peak gradient, mean gradient, and indexed aortic valve area) measured by Doppler echocardiography. We observed higher Lp(a), OxPL-apoB, and OxPL-apo(a) levels in patients with higher amounts of aortic valve calcium, as estimated on echocardiography (Fig. 2).

The distribution of Lp(a) levels in various Lp(a) thresholds in patients with CAVS is presented in Table 3. Results presented in Table 3 suggest that in our cohorts, depending on the assay used to measure Lp(a) levels, 23.3% to 32.2% of patients with CAVS have Lp(a) levels \(\geq 75 \) nmol/L, 18.4% to 29.9% have Lp(a) levels \(\geq 100 \) nmol/L, 14.9% to 24.1% have Lp(a) levels \(\geq 125 \) nmol/L, and 10.9% to 18.4% have Lp(a) levels \(\geq 150 \) nmol/L. The mean values corresponding to these thresholds are presented in Table 3.

To further study the association between Lp(a) and AVC, we measured aortic valve microcalcification by 18F-NaF PET/CT in another cohort of 55 participants without established CAVS who had higher (\(\geq 75 \) nmol/L, \(n = 27 \)) or lower (\(< 75 \) nmol/L, \(n = 28 \)) Lp(a) levels. The clinical characteristics of these participants classified on the basis of Lp(a) levels are presented in Table 4. These characteristics of the study participants were similar with respect to age, sex, aortic valve function, and morphology. Participants with lower Lp(a) levels were more likely to be current or past smokers and had on average higher triglyceride levels compared with those with higher Lp(a) levels.

Figure 3A presents representative images of aortic valve microcalcification on 18F-NaF PET, comparing participants without established CAVS who had a lower or higher Lp(a) level. The aortic valves of both study participants do not present any sign of macrocalcification assessed by CT. However, the 18F-NaF PET/CT revealed strong evidence of microcalcification in the participant with a higher Lp(a) level, but not in the participant.
with a lower Lp(a) level. Quantification of the median aortic valve aortic score and 18F-NaF uptake (TBR) in the 2 groups described in Table 4 is presented in Fig. 3B and C, respectively. The mean TBR was 40% higher in individuals with higher (mean TBR = 1.25 ± 0.23) versus lower (mean TBR = 1.15 ± 0.11) Lp(a) levels \((P = 0.02) \). Similar differences were obtained when we investigated a higher threshold for Lp(a) levels (higher vs lower than 125 nmol/L; results not shown) and if we excluded participants with evidence of AVC \((n = 25) \). No differences in AVC accumulation were noted between individuals with high versus low Lp(a) levels.

Discussion

The results of our study suggest that patients with mild, moderate, or severe CAVS recruited in 2 contemporary “real-world” clinical settings, who did not undergo AVR, are characterized by higher levels of Lp(a), OxPL-apoB, and OxPL-apo(a) compared with individuals without CAVS. On investigation of the differences in plasma levels of Lp(a) and OxPL in these patients, we found that the distribution of these biomarkers was strikingly different in patients with versus without CAVS, because we noticed an important shift in Lp(a), OxPL-apoB, and OxPL-apo(a) toward higher values. To further characterize the association between Lp(a) and OxPL with valvular calcification, we assessed aortic valve microcalcification by 18F-NaF PET/CT and found that on average, despite having comparable aortic valve morphologies and little to no evidence of macrocalcification on CT, individuals with high Lp(a) level had a 40% higher uptake of 18F-NaF in the aortic valve compared with individuals with low Lp(a) levels.

The association between Lp(a) levels and the presence of aortic valve sclerosis and stenosis was first demonstrated in a cross-sectional analysis of the Cardiovascular Health Study, which included 5201 participants aged > 65 years\(^{23}\). The association between high Lp(a) levels and AVC, first reported by Thanassoulis et al.\(^{2}\) in 2013, has been observed in various clinical settings, such as in patients with familial hypercholesterolemia\(^{11}\). In a case-control study of patients with versus without CAVS, Kamstrup et al.\(^{10}\) documented a strong association between Lp(a), OxPL-apoB, and OxPL-apo(a) levels and CAVS risk in primary prevention settings. Similar associations with Lp(a), OxPL-apoB, and end-stage CAVS
(patients undergoing AVR) were also reported by Nsaibia et al.7 in a cohort of patients with coronary artery disease. Moreover, our demonstration that patients with higher Lp(a) levels have evidence of developing aortic valve microcalcification even before any structural changes are seen on CT or echocardiography supports the concept that Lp(a) and OxPL might not only be associated with macroscopic AVC, CAVS, or AVR risk, but also could be implicated in the earliest steps of CAVS, even before the onset of macroscopic AVC.

There are currently no other treatment options for CAVS aside from surgical removal of the aortic valve (AVR). Whether lowering Lp(a) or OxPL levels in patients with aortic sclerosis or mild to moderate CAVS will delay the progression of aortic valve microcalcification, AVC, or CAVS is unknown and should be investigated to confirm the causal role of Lp(a) in CAVS progression and to improve outcomes in patients with high Lp(a) levels and CAVS. Antisense oligonucleotides targeting LPA mRNA have been engineered and are currently being tested in patients with elevated Lp(a) levels. If Lp(a)-lowering trials were conducted in patients with various CAVS severity, based on the results of our study, approximately 23.3\% to 32.2\% of patients with CAVS could be enrolled on the basis of a sufficiently elevated Lp(a) level if the Lp(a) threshold was set at 75 nmol/L (assuming that patients meet all other entry criteria). If more conservative thresholds were selected, one could expect to enroll 18.4\% to 29.9\% of patients with CAVS with Lp(a) levels \(\geq 100 \) nmol/L, 14.9\% to 24.1\% of patients with CAVS with Lp(a) levels \(\geq 125 \) nmol/L, or 10.9\% to 18.4\% of patients with CAVS with Lp(a) levels \(\geq 150 \) nmol/L. Our results suggest that different cohorts and different Lp(a) assays will likely contribute to the variation in the number of participants needed to screen for such trials.

By showing that individuals without CAVS with high Lp(a) levels may be characterized by higher aortic valve microcalcification assessed by 18F-NaF PET/CT, our results also suggest for the first time that Lp(a)/OxPL might be implicated in CAVS disease initiation, before the onset of macroscopic calcification of the aortic valve, a novel finding. 18F-NaF PET/CT is a noninvasive tool to assess active aortic valve pathological mineralization triggered by inflammation and cell death. 18F-NaF binds to active calcified nodules through chemical reactions with hydroxyapatite, a crystalline structure of calcium and
phosphates. Additionally, 18F-NaF is an economical PET ligand that is relatively easy to manufacture and is detectable below the detection limit of CT. This imaging outcome is used in the SALTIRE II trial, which will document the impact of drugs targeting osteoporosis in the progression of CAVS (NCT02132026).

Study strengths and limitations

Although the number of individuals included in our study might be suboptimal to represent the entire CAVS population, strengths of our study include the inclusion of a “real-world” CAVS population selected in a contemporary clinical setting. Therefore, we believe that our results might underestimate CAVS prevalence observed in the settings of patients with very high Lp(a) levels, for instance, above the 95th percentile of the population distribution of Lp(a). The overwhelming majority of our study population was white. The prevalence of patients with Lp(a) levels above certain thresholds might have been higher had we included individuals of black or South Asian ancestries. Other limitations of our study include the cross-sectional rather than a prospective study design and the estimation of AVC by echocardiography instead of CT in patients with CAVS. Additionally, although aortic valve NaF uptake has been shown to correlate with later-stage AVC accumulation and histological markers of CAVS severity in a small study, it would be important for other studies to determine whether microcalcification in the setting of high Lp(a) levels would eventually result in faster disease progression and the development of overt CAVS in an adequately powered study.

Conclusion

The results of our study suggest that elevated Lp(a) and OxPL levels are associated with prevalent CAVS in patients studied in a “real-world” echocardiography laboratory setting. In patients with elevated Lp(a), evidence of aortic valve microcalcification by 18F-NaF PET/CT is present before the development of macroscopic AVC and clinically manifested CAVS, suggesting the possibility to detect early events in disease initiation.
References

Table 1. Clinical characteristics of patients with vs. without calcific aortic valve stenosis.

<table>
<thead>
<tr>
<th>Clinical characteristics</th>
<th>Controls (Quebec cohort)</th>
<th>Patients with CAVS Quebec cohort</th>
<th>Montreal cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n=108)</td>
<td>(n=174)</td>
<td>(n=214)</td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td>62.4 ± 7.4</td>
<td>65.3 ± 12.3 *</td>
<td>73.6 ± 12.4</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>57 (53)</td>
<td>117 (67) *</td>
<td>119 (56)</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>28.1 ± 5.0</td>
<td>29.6 ± 5.8 *</td>
<td>27.7 ± 6.8</td>
</tr>
<tr>
<td>Waist circumference, cm</td>
<td>98.6 ± 13.1</td>
<td>103.5 ± 18.2 *</td>
<td>NA</td>
</tr>
<tr>
<td>Systolic blood pressure, mmHg</td>
<td>130.0 ± 15.5</td>
<td>132.2 ± 17.2</td>
<td>129.6 ± 22.3</td>
</tr>
<tr>
<td>Diastolic blood pressure, mmHg</td>
<td>79.4 ± 10.8</td>
<td>75.5 ± 9.4 *</td>
<td>68.4 ± 11.8</td>
</tr>
<tr>
<td>Heart rate, beats/min</td>
<td>69.9 ± 11.9</td>
<td>66.9 ± 12.8</td>
<td>74.9 ± 13.8</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td>16 (15)</td>
<td>46 (26) *</td>
<td>67 (31)</td>
</tr>
<tr>
<td>CAD, n (%)</td>
<td>12 (11)</td>
<td>58 (33) *</td>
<td>89 (42)</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>36 (34)</td>
<td>123 (71) *</td>
<td>146 (68)</td>
</tr>
<tr>
<td>Smoking (past or current), n (%)</td>
<td>56 (52)</td>
<td>122 (70) *</td>
<td>107 (52)</td>
</tr>
<tr>
<td>Hyperlipidemia, n (%)</td>
<td>45 (42)</td>
<td>125 (72) *</td>
<td>151 (71)</td>
</tr>
<tr>
<td>Doppler echocardiographic data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean gradient, mmHg</td>
<td>4.2 ± 1.5</td>
<td>17.3 ± 9.4 *</td>
<td>36.0 ± 21.4</td>
</tr>
<tr>
<td>Peak gradient, mmHg</td>
<td>7.7 ± 2.5</td>
<td>31.5 ± 15.6 *</td>
<td>NA</td>
</tr>
<tr>
<td>Peak aortic jet velocity, cm/s</td>
<td>137.5 ± 21.7</td>
<td>274.6 ± 59.1 *</td>
<td>372.6 ± 110.5</td>
</tr>
<tr>
<td>Indexed aortic valve area, cm²/m²</td>
<td>1.3 ± 0.3</td>
<td>0.7 ± 0.2 *</td>
<td>0.5 ± 0.2</td>
</tr>
<tr>
<td>Laboratory data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cholesterol, nmol/L</td>
<td>4.8 ± 1.1</td>
<td>4.3 ± 1.1 *</td>
<td>3.9 ± 1.2</td>
</tr>
<tr>
<td>Triglycerides, nmol/L</td>
<td>1.9 ± 0.9</td>
<td>1.6 ± 0.9 *</td>
<td>1.4 ± 0.7</td>
</tr>
<tr>
<td>HDL-C, nmol/L</td>
<td>1.4 ± 0.4</td>
<td>1.4 ± 0.4</td>
<td>1.2 ± 0.4</td>
</tr>
<tr>
<td>LDL-C, nmol/L</td>
<td>2.6 ± 1.0</td>
<td>2.2 ± 0.9 *</td>
<td>2.1 ± 1.0</td>
</tr>
</tbody>
</table>

CAD, coronary artery disease; CAVS, calcific aortic valve stenosis; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; NA, not available. Data are presented as mean ± standard deviation or n (%). *Significantly different from controls (Quebec cohort, p < 0.05).
Table 2. Correlations between Lp(a), oxPL-apoB and OxPL-apo(a) with aortic valve disease severity parameters in patients with calcific aortic valve stenosis of the Quebec cohort.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Lp(a)</th>
<th>OxPL-ApoB</th>
<th>OxPL-Apo(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak aortic jet velocity, cm/s</td>
<td>-0.02 (0.8)</td>
<td>0.07 (0.4)</td>
<td>-0.03 (0.7)</td>
</tr>
<tr>
<td>Peak gradient, mmHg</td>
<td>-0.02 (0.8)</td>
<td>0.07 (0.4)</td>
<td>-0.03 (0.7)</td>
</tr>
<tr>
<td>Mean gradient, mmHg</td>
<td>0.02 (0.8)</td>
<td>0.08 (0.4)</td>
<td>0.008 (0.9)</td>
</tr>
<tr>
<td>Indexed aortic valve area, cm²/m²</td>
<td>-0.02 (0.8)</td>
<td>-0.06 (0.5)</td>
<td>-0.01 (0.8)</td>
</tr>
</tbody>
</table>

Apo, apolipoprotein; Lp(a), lipoprotein(a); OxPL, oxidized phospholipids. Data are presented as r (p-value).
Table 3. Mean Lp(a) levels in patients with calcific aortic valve stenosis at various Lp(a) thresholds.

Lp(a) level categories (nmol/L)	N	%	N	%	Mean	Roche assay	Cumulative	N	%	N	%	Mean	USCD assay	Cumulative	N	%	N	%	Mean	Cumulative	N	%	N	%	Mean	Cumulative		
≥ 325	1	0.6	1	0.6	415.2			2	1.1	2	1.1	346.5	± 0.0	USCD assay			0	0	0	0	0		0	0	0	0	0	
300 - 325	1	0.6	2	1.1	368.4	± 66.3		1	0.6	3	1.7	334.4	± 21.0			0	0	0	0	0		1	0.5	1	0.5	281.3	± 28.4	
275 - 300	2	1.1	4	2.3	323.7	± 64.2		2	1.1	5	2.9	315.3	± 30.0			2	1.1	5	2.9	315.3	± 30.0	1	0.5	1	0.5	281.3	± 28.4	
250 - 275	1	0.6	5	2.9	312.5	± 61.1		3	1.7	8	4.6	294.9	± 36.5			1	0.5	1	0.5	281.3	± 28.4	0	0	1	0.5	281.3	± 28.4	
225 - 250	5	2.9	10	5.7	272.1	± 58.9		1	0.6	9	5.2	288.7	± 38.8			1	0.5	2	0.9	264.1	± 24.4	0	0	1	0.5	281.3	± 28.4	
200 - 225	3	1.7	13	7.5	258.3	± 57.4		5	2.9	14	8.0	261.7	± 48.5			1	0.5	3	1.4	250.5	± 29.2	0	0	1	0.5	281.3	± 28.4	
175 - 200	3	1.7	16	9.2	244.9	± 59.4		12	6.9	26	14.9	228.6	± 50.7			9	4.2	12	5.6	200.2	± 33.2	12	5.6	24	11.2	181.5	± 30.4	
150 - 175	3	1.7	19	10.9	232.6	± 61.3		6	3.4	32	18.4	216.3	± 52.5			1	0.5	3	1.4	250.5	± 29.2	8	3.7	32	14.9	170.8	± 32.4	
125 - 150	9	5.2	28	16.1	201.7	± 68.6		10	5.7	42	24.1	197.1	± 57.5			9	4.2	12	5.6	200.2	± 33.2	13	6.0	45	20.9	154.3	± 38.0	
100 - 125	4	2.3	32	18.4	190.5	± 70.2		10	5.7	52	29.9	180.4	± 62.1			1	0.5	3	1.4	250.5	± 29.2	12	5.6	24	11.2	181.5	± 30.4	
75 - 100	13	7.5	45	25.9	159.3	± 77.1		4	2.3	56	32.2	173.9	± 64.2			5	2.3	50	23.3	147.3	± 41.8	11	5.1	61	28.4	132.9	± 49.0	
50 - 75	12	6.9	57	32.8	138.5	± 79.5		10	5.7	66	37.9	156.6	± 72.1			32	14.9	93	43.3	99.2	± 61.4	32	14.9	93	43.3	99.2	± 61.4	
25 - 50	17	9.8	74	42.5	114.9	± 82.2		26	14.9	92	52.9	121.5	± 83.0			12	5.6	215	100.0	47.9	± 60.5	12	5.6	215	100.0	47.9	± 60.5	
0 - 25	100	57.5	174	100.0	54.3	± 74.9		82	47.1	174	100.0	68.5	± 82.5			174	100.0	174	100.0	68.5	± 82.5	215	100.0	215	100.0	68.5	± 82.5	

Lp(a), lipoprotein(a); UCSD, University of California, San Diego.
Table 4. Clinical characteristics of individuals without calcific aortic valve stenosis with vs. without elevated Lp(a) levels.

<table>
<thead>
<tr>
<th>Clinical characteristics</th>
<th>Lp(a) < 75 nmol/L (n=28)</th>
<th>Lp(a) ≥ 75 nmol/L (n=27)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>61.7 ± 6.4</td>
<td>59.8 ± 8.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Men, n (%)</td>
<td>19 (68)</td>
<td>16 (59)</td>
<td>0.5</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>28.5 ± 4.3</td>
<td>28.8 ± 4.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Waist circumference, cm</td>
<td>98.9 ± 12.3</td>
<td>99.1 ± 10.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Systolic blood pressure, mmHg</td>
<td>133.0 ± 14.8</td>
<td>126.1 ± 14.0</td>
<td>0.09</td>
</tr>
<tr>
<td>Diastolic blood pressure, mmHg</td>
<td>83.3 ± 9.0</td>
<td>78.4 ± 10.6</td>
<td>0.07</td>
</tr>
<tr>
<td>Heart rate, beats/min</td>
<td>67.1 ± 10.4</td>
<td>69.0 ± 11.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td>2 (7)</td>
<td>4 (15)</td>
<td>0.4</td>
</tr>
<tr>
<td>CAD, n (%)</td>
<td>2 (7)</td>
<td>5 (19)</td>
<td>0.2</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>9 (32)</td>
<td>13 (48)</td>
<td>0.2</td>
</tr>
<tr>
<td>Smoking (past or current), n (%)</td>
<td>19 (68)</td>
<td>10 (37)</td>
<td>0.02</td>
</tr>
<tr>
<td>Hyperlipidemia, n (%)</td>
<td>12 (43)</td>
<td>17 (63)</td>
<td>0.1</td>
</tr>
<tr>
<td>Mean gradient, mmHg</td>
<td>4.4 ± 1.6</td>
<td>4.6 ± 1.9</td>
<td>0.6</td>
</tr>
<tr>
<td>Peak gradient, mmHg</td>
<td>8.4 ± 3.1</td>
<td>8.8 ± 3.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Peak aortic jet velocity, cm/s</td>
<td>139.7 ± 25.6</td>
<td>144.8 ± 27.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Indexed aortic valve area, cm²/m²</td>
<td>1.3 ± 0.3</td>
<td>1.7 ± 0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Aortic sclerosis, n (%)</td>
<td>4 (14)</td>
<td>6 (22)</td>
<td>0.4</td>
</tr>
<tr>
<td>Total cholesterol, mmol/L</td>
<td>5.0 ± 1.0</td>
<td>4.8 ± 1.2</td>
<td>0.6</td>
</tr>
<tr>
<td>Triglycerides, mmol/L</td>
<td>2.1 ± 1.1</td>
<td>1.6 ± 0.7</td>
<td>0.05</td>
</tr>
<tr>
<td>HDL-C, mmol/L</td>
<td>1.3 ± 0.5</td>
<td>1.4 ± 0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>LDL-C, mmol/L</td>
<td>2.7 ± 0.9</td>
<td>2.7 ± 1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

AU, Agatson units; CAD, coronary artery disease; CT, computed tomography; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Lp(a), lipoprotein(a). Data are presented as mean ± standard deviation, median (interquartile range) or n (%).
Figure 1. Distribution and Lp(a) (A), Ox-PL-apoB (B) and Ox-PL-apo(a) (C) levels in patients with vs. without calcific aortic valve stenosis.
Figure 2. Lp(a) (A), Ox-PL-apoB (B) and Ox-PL-apo(a) (C) levels in patients with calcific aortic valve stenosis separated on the basis of estimated aortic valve calcium accumulation by echocardiography.

1: Statistically different than the group with mild aortic valve accumulation (P < 0.05).
Figure 3. A) Representative image of aortic valve microcalcification in a patient with a low Lp(a) level (CT at the top left and PET/CT at the bottom left) and a patient with a high Lp(a) level (CT at the top right and PET/CT at the bottom right). B) Mean aortic valve calcium score in individuals with high vs. low Lp(a) levels C) Mean 18F-NaF uptake (tissue-to-background ratio) in individuals with high vs. low Lp(a) levels.

* P =0.02
Conclusions et perspectives

Le phénotype de la Lp(a) élevée est un facteur de risque prévalent et indépendant des maladies cardiovasculaires et de la SA (78, 93). Étant principalement influencées par le gène *LPA*, les concentrations plasmatiques de la Lp(a) varient très peu dans le temps. Tel qu’illustré dans la revue de littérature présentée au chapitre 1 (111), les facteurs environnementaux et les régimes alimentaires n’ont que peu ou pas d’effet sur les concentrations de Lp(a). Par ailleurs, les médicaments hypolipidémiants connus pour réduire les concentrations de la Lp(a), tels que la niacine ou les inhibiteurs de la PCSK9, n’auraient pas d’impact suffisant sur les concentrations de Lp(a) pour influencer la survenue d’événement cardiovasculaire associée à des concentrations élevées de Lp(a). Le développement d’une thérapie ciblant spécifiquement la Lp(a) est à privilégier pour permettre une réduction substantielle de ses concentrations et, ainsi, réduire potentiellement le risque d’un événement cardiovasculaire ou de SA.

Récemment, une étude de phase III évaluant l’impact d’une thérapie réduisant les concentrations de Lp(a) sur la survenue d’événement cardiovasculaire majeur et la mortalité chez des patients atteints de maladies cardiovasculaires et ayant des concentrations de Lp(a) élevées (≥ 70 mg/dL) a été approuvé et débutera en janvier 2020 (NCT04023552). Il a été précédemment démontré que l’IONIS-APO(a)-L RX, un ASO contre le gène *LPA*, réduit de façon impressionnante les concentrations de Lp(a) après une seule injection (102). En effet, l’administration d’une seule dose de 80 mg réduisait de près de 80% les concentrations de Lp(a). L’effet de l’IONIS-APO(a)-L RX sur la survenue d’événement cardiovasculaire sera évalué chez plus de 7000 patients dans une étude multicentrique randomisée à double insu, contrôlée par placebo, avec l’administration par voie sous-cutanée de 80 mg de l’agent thérapeutique une fois par mois. Les résultats très attendus de cette étude ne seront pas disponibles avant quelques années, la date de fin de l’essai clinique étant prévue en 2024. D’ici là, nous espérons qu’un essai clinique similaire débutera en SA afin d’évaluer l’effet d’une réduction significative des concentrations de Lp(a) avec l’IONIS-APO(a)-L RX sur le développement ou la progression de la maladie.

Affectant un nombre croissant d’individus, la SA est associée à un fardeau socioéconomique
important et grandissant dans notre système de santé (1, 112). Le manque d’agents thérapeutiques pour traiter ou pour ralentir la progression de la SA est aberrant et le RVA demeure la seule option. Néanmoins, de nombreuses études ont démontré qu’une concentration élevée de Lp(a) est un facteur de risque causal de la SA (63), en plus d’être associée à une progression plus rapide de la maladie (55). Par conséquent, la Lp(a) semble être une cible thérapeutique potentielle dans la SA. En dépit des nombreuses évidences génétiques, des études cliniques devront être réalisées pour établir l’efficacité du traitement pharmacologique réduisant les concentrations de Lp(a) sur la SA.

La réalisation du projet de recherche présentée au Chapitre 2 a permis d’en apprendre davantage sur l’implication de la Lp(a) dans le développement de la SA, plus spécifiquement dans son rôle dans la calcification active des feuillet s aortiques. En effet, nous avons démontré que des concentrations élevées de Lp(a) chez des individus sans SA sont associées à une microcalcification plus importante au niveau de la valve aortique, évaluée par PET/CT. Zheng et al. ont observé les mêmes résultats dans une population de patients ayant une SA (56). Par conséquent, la mesure de la microcalcification par PET/CT pourrait être un point d’aboutissement d’intérêt dans de futurs essais cliniques évaluant l’impact d’une thérapie sur le développement ou la progression de la SA. Étant un marqueur de l’activité de la maladie, la PET/CT permettrait de détecter les effets thérapeutiques plus rapidement que les méthodes classiques d’imagerie et la mesure de la captation du 18F-NaF serait potentiellement plus sensible aux changements que les mesures hémodynamiques ou de score calcique obtenues lors d’une ETT et d’une CT, respectivement (113).

Par ailleurs, selon les résultats obtenus, les individus ayant des concentrations élevées de Lp(a) semblent présenter un processus actif de calcification, reflété par une valeur de TBR plus importante que les individus ayant de faibles concentrations de Lp(a), et ce, avant même l’apparition clinique de macrocalcification. Cette population pourrait bénéficier d’un traitement préventif puisque la microcalcification est susceptible d’être réversible, comparativement à la macrocalcification. Il serait donc intéressant d’inclure cette population dans de futurs essais cliniques évaluant l’impact d’une thérapie sur la prévention du développement de la SA. Encore une fois, l’utilisation de la PET/CT, pour évaluer les changements de microcalcification au niveau de la valve aortique serait d’un grand intérêt. D’ici l’instauration d’un traitement pharmacologique permettant de réduire les
concentrations de Lp(a), l’adoption de saines habitudes de vie et le contrôle strict des facteurs de risque traditionnels des maladies cardiovasculaires, tels que le tabagisme, l’hypertension artérielle et le diabète, sont primordiales (114, 115). En effet, une santé cardiovasculaire dite idéale pourrait réduire considérablement les risques de maladies cardiovasculaires et de SA associés à des concentrations élevées de Lp(a).
Références

journal. 2017;38:3351-3358.
49. Caira FC, Stock SR, Gleason TG, McGee EC, Huang J, Bonow RO, Spelsberg TC, McCarthy PM, Rahimtoola SH and Rajamannan NM. Human degenerative valve disease is associated with up-
regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. Journal of the American College of Cardiology. 2006;47:1707-12.

55. Capoulade R, Yeang C, Chan KL, Pibarot P and Tsimikas S. Association of Mild to Moderate Aortic Valve Stenosis Progression With Higher Lipoprotein(a) and Oxidized Phospholipid Levels: Secondary Analysis of a Randomized Clinical Trial. JAMA cardiology. 2018.

77. Boerwinkle E, Leffert CC, Lin J, Lackner C, Chiesa G and Hobbs HH. Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations. The Journal of clinical investigation. 1992;90:52-60.

Annexe A : Impact d’une chirurgie bariatrique sur les concentrations de la lipoprotéine(a) chez des patients ayant une obésité sévère

Audrey-Anne Després, BSc; Marie-Eve Piché, MD, PhD; Audrey Auclair, PhD; Laurent Biertho, MD; Simon Marceau, MD; Frédéric-Simon Hould, MD; Simon Biron, MD; Stéfane Lebel, MD; Odette Lescelleur, MD; François Julien, MD; Julie Martin, PhD; André Tchernof, PhD; Patrick Mathieu, MD, MSc, FRCSC; Paul Poirier MD, PhD et Benoit J. Arsenault, PhD

Soumis en août 2019 dans

Obesity Surgery

Sous le titre:

Acute and chronic impact of bariatric surgery on plasma lipoprotein(a) levels in patients with severe obesity
Résumé

Introduction : Un taux élevé de lipoprotéines(a) [Lp(a)] est un facteur de risque indépendant des maladies cardiovasculaires. Les études d'intervention sur les habitudes de vie ciblant la perte de poids ont révélé peu ou pas d'impact significatif sur les concentrations de Lp(a). L'impact d’une intervention qui induit une perte de poids importante, comme la chirurgie bariatrique, sur les concentrations de Lp(a) n'est pas clair actuellement.

Objectif : Déterminer l'impact à court et à long terme de la chirurgie bariatrique sur les concentrations de Lp(a) chez les patients souffrant d'obésité sévère.

Méthodes : Cent patients souffrant d'obésité sévère ont été inclus. De ce nombre, 69 ont subi une dérivation biliopancréatique avec commutation duodénale (BPD-DS) et 31 n'ont pas subi de chirurgie et ont servi de contrôle. Les concentrations de Lp(a) ont été mesurées avant l'intervention chirurgicale et 6 et 12 mois après le BPD-DS dans le groupe chirurgical, et au départ ainsi qu’à 6 et 12 mois dans les groupes témoin.

Résultats : Les concentrations de Lp(a) au départ étaient de 11,1 (4,1 - 41,6) nmol/L et de 11,3 (5,1 - 72,5) nmol/L dans le groupe chirurgie et le groupe témoin, respectivement, sans différence significative entre les groupes. Après 6 mois, nous avons observé une diminution de 13 % des taux de Lp(a) dans le groupe chirurgical (de 11,1 (4,1 - 41,6) à 9,7 (2,9 - 25,6) nmol/L, p<0,0001), mais cette diminution n'était pas maintenue après 12 mois (11,1 (3,9 - 32,8) nmol/L, p=0,8). Les concentrations de Lp(a) n'ont pas changé après 6 mois dans le groupe témoin, tandis qu'une légère augmentation a été observée après 12 mois (11,3 (5,1 - 72,5) à 13,4 (6,0 - 92,2) nmol/L, p = 0,006).

Conclusion : Nos résultats suggèrent que la chirurgie DPB-DS réduit les taux de Lp(a) à court terme (6 mois) chez les patients souffrant d'obésité sévère, mais cette amélioration n'est pas soutenue.
Abstract

Introduction: Elevated lipoprotein(a) [Lp(a)] level is an independent risk factor for cardiovascular diseases. Lifestyle intervention studies targeting weight loss revealed little to no significant impact on Lp(a) levels. The impact of interventions that induce substantial weight loss, such as bariatric surgery, on Lp(a) levels is currently unclear.

Objective: To determine the acute and long-term impact of bariatric surgery on Lp(a) levels in patients with severe obesity.

Methods: One hundred patients with severe obesity were included. Of them, 69 underwent biliopancreatic diversion with duodenal switch (BPD-DS) surgery, and 31 did not undergo bariatric procedures, and served as control. Lp(a) levels were measured before surgery and at 6 and 12 months after BPD-DS in the surgery group, and at baseline and after 6 and 12 months in control groups.

Results: Lp(a) levels at baseline were 11.1 (4.1 – 41.6) nmol/L and 11.3 (5.1 – 72.5) nmol/L in the surgery and control group, respectively, with no significant difference between groups. At 6 months, we observed a 13% decrease in Lp(a) levels in the surgery group (from 11.1 (4.1 – 41.6) to 9.7 (2.9 – 25.6) nmol/L, p<0.0001) but this decrease was not sustained at 12 months (11.1 (3.9 – 32.8) nmol/L, p=0.8). Lp(a) levels did not change at 6 months in the control group whereas a small increase was observed at 12 months (11.3 (5.1 – 72.5) to 13.4 (6.0 – 92.2) nmol/L, p=0.006).

Conclusion: Our results suggest that DPB-DS surgery reduces Lp(a) levels in the short term (6 months) in patients with severe obesity but this improvement is not sustained.
Acute and chronic impact of bariatric surgery on plasma lipoprotein(a) levels in patients with severe obesity

Short title: Impact of bariatric surgery on Lp(a) levels

Audrey-Anne Després¹,², BSc; Marie-Eve Piché¹,², MD, PhD; Audrey Auclair¹, PhD; Laurent Biertho¹, MD; Simon Marceau¹, MD; Frédéric-Simon Hould¹, MD; Simon Biron¹, MD; Stéfane Lebel¹, MD; Odette Lescelleur¹, MD; François Julien¹, MD; Julie Martin¹, PhD; André Tchernof¹,³ PhD; Patrick Mathieu¹,⁴, MD, MSc, FRCSC; Paul Poirier¹,⁵ MD, PhD and Benoit J. Arsenault¹,²*, PhD

1) Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Canada
2) Department of Medicine, Faculty of Medicine, Université Laval, Québec, Canada
3) School of Nutrition, Université Laval, Québec, Canada
4) Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
5) Faculty of Pharmacy, Université Laval, Québec, Canada

Address for correspondence
Benoit J. Arsenault, PhD
Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec
Y-3601, Pavillon Marguerite D’Youville
2725 chemin Ste-Foy
Québec (QC) Canada
G1V 4G5
T: 418-656-8711 ext. 3498
E: benoit.arsenault@criucpq.ulaval.ca

Disclosure
A.T. and L.B. receive research funding from Johnson & Johnson Medical Companies and Medtronic for scientific work on bariatric surgery.

Acknowledgements
This work was supported by operating grants from the Canadian Institutes of Health Research. We would like to thank Sylvain Pouliot for his technical help. M-E.P. is recipient
of a studentship from the Fonds de Recherche du Québec-Santé (FRQS). P.M. holds a FRQS research Chair on the Pathobiology of Calcific Aortic Valve Disease. B.J.A. holds a junior scholar award from the Fonds de recherche du Québec: Santé (FRQ-S). P.P. is a senior scholar from the FRQ-S. A.C.C. is the recipient of the GlaxoSmithKline Chair in Diabetes of the Université de Sherbrooke.
Introduction

Lipoprotein(a) [Lp(a)] level is a genetic risk factor for a broad range of cardiovascular diseases (CVD) such as coronary artery disease, stroke and calcific aortic valve stenosis (CAVS) (1, 2). It is estimated that up to 20% of the population have elevated Lp(a) plasma levels. Lp(a) is a circulating cholesterol-rich lipoprotein particle similar to low-density lipoprotein (LDL) where apolipoprotein-B100 is linked to an apolipoprotein(a) by a disulphide bond. Genetic studies have shown that up to 70-90% of the variance in Lp(a) could be explained by genetic factors. Several dietary intervention studies have investigated the association of dietary interventions on Lp(a) levels. These studies revealed divergent and inconsistent results regarding the impact of energy deficit-induced by weight loss on Lp(a) concentrations. For instance, a study from 1990 reported a mean reduction on Lp(a) concentrations of 19% and 30% in men and premenopausal women with obesity, respectively, after a low calorie-induced weight loss intervention (3). Kiortsis et al. (4) later observed an 18% reduction of Lp(a) levels but only in patients with high Lp(a) levels at baseline after a low-calorie diet. More recently, Berk et al. reported a 27% increase in Lp(a) levels after diet-induced weight loss in individuals with obesity and type 2 diabetes (T2D) (5). With these conflicting results, it is difficult to draw firm conclusions regarding the impact of diet-induced weight loss on Lp(a) plasma levels. Considering that the typical 5-15% weight loss magnitude observed in previous studies with diet intervention may have contributed to discrepancies, we therefore investigated the impact of a more pronounced weight loss, such as that induced by bariatric surgery. In a previous study, Boyer et al. showed that biliopancreatic diversion with duodenal switch (BPD-DS) surgery favorably influenced LDL metabolism in patients with severe obesity, with a rapid reduction in the acute phase after surgery, and this decrease persisted in the chronic phase (6). Some studies have documented the impact of bariatric surgery on Lp(a) levels have been performed and yielded inconsistent results (5, 7, 8). The objective of our study was to determine the acute- and long-term impact of bariatric surgery on plasma Lp(a) levels in patients with severe obesity.
Material and methods

Study patients

Patients were recruited at the bariatric surgery clinic of the Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), as previously described (9). A total of 69 selected men and women with severe obesity (body mass index; BMI ≥ 40 or ≥ 35 kg/m² with associated comorbidities) who were 18 years of age or older were included in this study. A control group that included 31 participants also with severe obesity were selected from the waiting list to match those of the BPD-DS surgery group for age and sex. The BPD-DS surgery is an hydrid surgery who involves a sleeve gastrectomy and a small intestinal bypass. With a combined restrictive and malabsorptive operations, the BPD-DS surgery have better impact in terms of weights reduction and comorbidity improvement than other bariatric surgery (10). Blood samples were obtained before BPD-DS surgery (baseline), after day 1 and 5 as well as 6 and 12 months following surgery. For the control group, blood samples were obtained at baseline and at 6 and 12 months. The ethics committee of the IUCPQ approved the experimental protocol and all patients gave their written informed consent before being included in the study.

Anthropometric measurements, medication use and comorbidities

Following a 12-hour fast, weight, BMI, fat and fat-free mass were measured with an electrical bioimpedance balance (Tanita TBF-310, Tokyo, Japan). Medical history and pharmacological therapy were collected from clinical file consultations for the presence of diabetes, hypertension, CVD, and dyslipidemia.

Plasma lipid-lipoprotein profile

After a 12-hour overnight fast, blood samples were collected into Vacutainer tubes containing EDTA for the measurement of plasma lipid and lipoprotein levels. Plasma was then aliquoted into microtubes and stored at −80°C until analysis. Assays were performed using standard methodology in the hospital clinical biochemistry laboratory or in the research laboratory. Glycated hemoglobin (HbA1c) was measured in fresh samples by turbidimetric inhibition immunoassay. LDL cholesterol concentration was calculated using the Friedewald formula(11). Apolipoprotein B (ApoB) levels were measured by immunoturbidimetric
method (Roche Diagnostics Integra 800 system). Plasma cholesterol, triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and glucose were measured using colorimetric enzymatic kits (Cholesterol, TG and HDL-C: Roche Diagnostics Indianapolis, IN, USA; glucose: Wako Chemicals, Richmond, VA, USA). Plasma insulin levels were measured by ELISA (Crystal Chem Inc., Downers Grove, IL, USA). The homeostatic model assessment of insulin resistance (HOMA-IR) was calculated from fasting plasma insulin and glucose levels as (insulin x glucose)/22.5, where the insulin concentration is reported as milli-units per liter and glucose as milli-molar concentrations. Plasma Lp(a) levels were measured by turbidimetric assay using the Tina-quant Lipoprotein(a) Gen.2 system (Cobas integra 400/800, Roche Diagnostics, Mannheim, Germany).

Statistical analyses

Student t-tests and chi-square tests were used respectively to assess differences between continuous and categorical clinical variables at baseline in the surgery vs. control group. Student t-tests were also used to test the differences in plasma Lp(a) levels across patients’ subgroups (sex, statin use and T2D status). For the bariatric surgery patients, to analyze significant changes among scheduled endpoints measurements (baseline, 1 day, 5 days, 6 and 12 months), data were analyzed using a mixed model with two experimental factors defined: one linked to the variability among patients, a random factor and the other associated to the comparison among the different time periods, a fixed factor. The latter was analyzed as a repeated-measure factor with the use of a heterogeneous compound symmetric covariance structure. To compare with the control group at baseline, 6 and 12 months, a second fixed factor was introduced in the statistical mixed model with an interaction term. When appropriate, some variables were analyzed using log-transformation to fulfill the model assumptions and reported p values are based on these transformations. Spearman rank correlation coefficients were computed to determine the association between Lp(a) levels at baseline and Lp(a) levels changes after 6 and 12 months. All statistical analyses were performed with SAS (v9.3, Cary, NC, USA).

Results

Baseline anthropometric and clinical characteristics of all patients are presented in Table 1. Patients who underwent BPD-DS had a higher BMI (49.9 ± 7.0 vs. 45.3 ± 7.7 kg/m²;
p=0.004) and fat mass (70.6 ± 17.5 vs. 60.5 ± 17.7 kg; p=0.008) compared to controls. The lipoprotein-lipid profile was similar between groups with no significant differences in baseline Lp(a) levels between the BPD-DS and control groups (Figure 1A). Moreover, we did not observe a significant difference in Lp(a) levels at baseline between women and men (41.8 ± 60.3 and 34.8 ± 53.0 nmol/L, respectively) (Figure 1B).

BPD-DS surgery led to significant reduction of BMI after 6 and 12 months (36.2 ± 6.9 and 31.1 ± 5.2 kg/m2, respectively; p<0.0001) and no change has been observed in the control group. Results presented in Figure 2 show the impact of bariatric surgery on Lp(a) levels across the follow-up period. Five days after bariatric surgery, an increase in Lp(a) levels was observed, followed by a decrease at 6 months (from 11.1 (4.1 – 41.6) to 9.7 (2.9 – 25.6) nmol/L, p<0.0001), a reduction that did not appear to be sustained at 12 months (11.1 (3.9 – 32.8) nmol/L, p=0.8). In the control group, an unexpected increase in Lp(a) levels was observed at 12 months (11.3 (5.1 – 72.5) to 13.4 (6.0 – 92.2) nmol/L, p=0.006). The surgery group was then separated into tertiles according to Lp(a) concentrations at baseline. As reported in Figure 3, compared with patients in the bottom Lp(a) tertile, participants in the top Lp(a) tertile had a greater Lp(a) reduction at 6 and 12 months. In patients included in the top Lp(a) tertile, the Lp(a) reduction at 12 months after BPD-DS surgery remained significant, which is not the case for the middle and lower tertile (Figure 3). Furthermore, we found negative correlations between Lp(a) levels at baseline and Lp(a) changes after 6 and 12 months (r=0.62, p<0.0001 and r=0.44, p=0.0002, respectively). A strong correlation between Lp(a) levels at baseline and Lp(a) levels after 12 months was also observed (r=0.92, p<0.0001) (Figure 4).

Finally, because previous reports have shown that statin therapy influences Lp(a) levels, we evaluated changes in Lp(a) levels according to statin use at baseline. All patients in the surgery group who were on statins at baseline (n=23) stopped using them following surgery. Results presented in Figure 5 suggest that changes in Lp(a) levels observed after the BPD-DS surgery were not influenced by statin use. Lp(a) levels were not significantly different between groups at baseline and at any time after the BPD-DS surgery, but Lp(a) appeared to be slightly but not significantly higher in patient who used a statin at baseline at all time points.
Discussion

Our findings suggest that BPD-DS surgery lowers Lp(a) levels in the short term (6 months) in patients with severe obesity but not in the longer term (12 months). To the best of our knowledge, our study is the first to document both the acute and long-term impact of BPD-DS surgery on plasma Lp(a) levels. Few studies have investigated the impact of different bariatric surgeries on Lp(a) concentrations. In 1997, Boman and Ericson (7) determined whether Lp(a) levels were altered several years following weight reduction induced by biliointestinal bypass surgery in 43 patients with severe obesity. This study observed that patients who had previously undergone bariatric surgery (mean time since surgery 10.7 years) had a significantly lower Lp(a) level than the control group. Plasma levels of Lp(a) were only assessed at follow-up and the acute impact of bariatric surgery was not investigated in that study. More recently, the effects of laparoscopic sleeve-gastrectomy, a restrictive surgery, on Lp(a) levels 6, 12 and 24 months following surgery was tested in 52 patients with severe obesity (12). The authors concluded that sleeve-gastrectomy surgery did not significantly change Lp(a) levels and they did not observe a modulation of the response as a function of T2D or hypertriglyceridemia. Moreover, in a sample of patients with severe obesity who underwent Roux-en-Y gastric bypass (RYGB) surgery, Williams et al (8) observed a significant reduction in Lp(a) levels 3, 6 and 12 months after this restrictive and slightly malabsorptive surgery. Unfortunately, in both studies, the number of patients at each time point after surgery were not consistent and the method for Lp(a) measurement was not specified. Other studies investigated the impact of various types of bariatric surgeries on Lp(a) levels, either combined or only restrictive bariatric surgery. In 2010, a study including more than 800 patients with severe obesity compared Lp(a) reduction post-RYGB vs adjustable gastric banding (AGB) surgery. No significant difference in Lp(a) changes post RYGB or AGB surgery have been observed. Moreover, neither RYGB nor AGB induced reductions in Lp(a) levels 12 months following surgery (13). A second study compared the effects of RYGB (n=27) vs sleeve gastrectomy (n=35) on Lp(a) levels, 1 month and 6 months after surgery (14). There were no significant differences at baseline between groups, including Lp(a) levels. However, changes in Lp(a) levels differed greatly by procedure; whereas Lp(a) was reduced at 1 months after both procedures, it was persistently decreased after RYGB (by 30%).
In our study, we found that Lp(a) levels significantly increased five days after BPD-DS surgery, then decreased at 6 months. The biological mechanisms underlying this finding are not known. The increased observed in the perioperative period at 5 days could be explained by several factors including surgery-related release of acute phase proteins, which could modify secretion and/or catabolism of Lp(a). Lp(a) being acute phase reactant, the rapid increase in Lp(a) levels could also be the result of the surgery itself through the acute phase inflammatory response observed immediately after BPD-DS (15, 16). Indeed, numerous studies have observed a positive association between Lp(a) levels and inflammatory markers, such as interleukin-6 (IL-6) and C-reactive protein (CRP) or with autoimmune diseases (17-20). Moreover, inflammatory markers are known to increase rapidly in the acute phase after surgery (16). Illan-Gomez et al. (21) observed, in patients with severe obesity, significant reductions 6 months after bariatric surgery of several inflammatory markers, such as CRP and IL-6 (from 26.19 ± 23.17 g/L to 8.76 ± 11.95 g/L (p<0.001) and from 3.84 ± 1.67 pg/mL to 2.46 ± 1.80 pg/mL (p<0.001), respectively. Inhibition of IL-6 signalling with tocilizumab, a monoclonal antibody against the IL-6 receptor decreased plasma Lp(a) levels, suggesting that IL-6 signalling might be involved in the regulation of Lp(a) levels in humans (22). The change in the inflammatory state during the acute post-surgery phase and after 6 months may have contributed to alteration of Lp(a) levels found after BPD-DS in our study sample.

Alternatively, acute-modification of dietary intake could also be a contributory factor. A recent prospective study, involving two different samples of individuals with obesity followed for 8 weeks, observed increases in Lp(a) levels (14.8 and 13.5 nmol/L, cohort 1 and 2, respectively, p<0.05) after following a diet very low in energy (750 kcal/day) consisting of two meal replacements and a small dinner daily (5). Interestingly, changes in Lp(a) levels were positively correlated with baseline Lp(a) levels. The type and content of macronutrients in the recommended diet after bariatric surgery may also be an important determinant of the impact of diet on Lp(a) levels. Indeed, at least four studies observed significant elevations in Lp(a) levels after short-term isocaloric low-fat diets (23-26). Moreover, in the OMNI heart trial which compared the impact of 3 diets (high-carbohydrate, high-protein and high in unsaturated fats), the high-protein diet induced the greatest increase on Lp(a) levels (27). The combination of a low-calorie, low-fat and high-protein diet often recommended after bariatric surgery could have, at least in part, contributed to the acute increase in plasma Lp(a) levels.
after bariatric surgery. Nevertheless, it is important to note that the Lp(a) level changes after nutritional intervention in patients with obesity were minor and the clinical impact is negligible.

With regards to the reduction observed after 6 months, mechanisms that may explain this reduction of Lp(a) levels could also involve bile acids. It was recently observed that the concentration of circulating bile acids increased after RYGB surgery, independently of caloric restriction (28). The alterations in bile flow that results from anatomical changes caused by bariatric surgery and changes in gut microbiome may consequently influence circulating bile acid concentrations and could subsequently contribute to decrease Lp(a) levels. Indeed, it has been demonstrated in transgenic mice expressing human apo(a) that increased circulating bile acids negatively modulate the expression of apo(a) via the activation of farnesoid X receptor (FXR) (29). In humans, conditions which lead to elevated circulating bile acid levels are associated with low plasma Lp(a) levels and resolution of high circulating bile acids leads to increased Lp(a) levels. Indeed, patients with cholestasis, a condition known to increase serum bile acid levels, have low Lp(a) levels and after unblocking of the bile duct was performed Lp(a) levels significantly increased (30). Moreover, in 20 patients suffering from biliary obstruction, surgical or endoscopic treatment induced normalization of circulating bile acid levels and a significantly increased Lp(a) concentrations (2.7 ± 1.1 mg/dL before therapy and 20.3 ± 4.4 mg/dL after therapy, p<0.0001) (29). Taken together, these data suggest that biliary acid metabolism, which is significantly modified after BPD-DS surgery, could be a significant contributor to apo(a) synthesis and/or catabolism.

Despite these hypotheses, it is not possible in the current study to determine if the acute impact (at day 5) of BPD-DS on plasma Lp(a) levels is due to BPD-DS per se or to the severe caloric restriction accompanying this procedure. Results of lipoprotein kinetic studies revealed that Lp(a) levels are mainly determined by production rates rather than catabolism rate (31). Moreover, in the chronic phase, Lp(a) levels returned to baseline values in patients who underwent BPD-DS. This observation reinforces the notion that Lp(a) levels are primarily genetically determined and that weight loss intervention may not have a lasting effect on Lp(a) levels.
Approximately one third of patients who underwent bariatric surgery in our sample were treated with statins at baseline. All of them stopped taking them shortly after the surgery. Recently, Arsenault et al. (32) observed a dose-dependent increase of Lp(a) levels with increasing atorvastatin doses in patients at high cardiovascular risk. Therefore, we investigated the impact of BPD-DS in patients who were treated with statins vs. patients without hypolipemic therapy. In this analysis, we found that Lp(a) response to BPD-DS was comparable across subgroups.

In conclusion, our results suggest that BPD-DS affect Lp(a) levels in the short term in patients with severe obesity but not in the longer term (12 months). These results reinforce the notion that Lp(a) plasma level is mainly genetically determined and that interventions that target weight loss interventions do not have lasting effect on Lp(a) levels.
References

Table

Table 1. Baseline characteristics of study patients.

<table>
<thead>
<tr>
<th></th>
<th>Bariatric surgery</th>
<th>Controls</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>69</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td>41.5 (11.1)</td>
<td>41.8 (10.3)</td>
<td>0.9</td>
</tr>
<tr>
<td>Men, n (%)</td>
<td>20 (29.0)</td>
<td>11 (35.5)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Statin users, n (%)</td>
<td>23 (33.3)</td>
<td>17 (54.8)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Smokers, n (%)</td>
<td>13 (18.8)</td>
<td>8 (25.8)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Type 2 diabetes, n (%)</td>
<td>34 (49.3)</td>
<td>10 (32.3)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Coronary artery disease, n (%)</td>
<td>11 (11.1)</td>
<td>1 (1.0)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>46 (45.5)</td>
<td>20 (19.8)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>136.6 (26.4)</td>
<td>127.1 (28.4)</td>
<td>0.1</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>49.9 (7.0)</td>
<td>45.3 (7.7)</td>
<td>0.004</td>
</tr>
<tr>
<td>Fat mass, kg</td>
<td>70.6 (17.5)</td>
<td>60.5 (17.7)</td>
<td>0.008</td>
</tr>
<tr>
<td>Fat-free mass, kg</td>
<td>66.0 (13.5)</td>
<td>66.7 (16.1)</td>
<td>0.8</td>
</tr>
<tr>
<td>LDL cholesterol, mmol/L</td>
<td>2.61 (0.72)</td>
<td>2.56 (0.86)</td>
<td>0.8</td>
</tr>
<tr>
<td>HDL cholesterol, mmol/L</td>
<td>1.27 (0.29)</td>
<td>1.12 (0.27)</td>
<td>0.02</td>
</tr>
<tr>
<td>Triglycerides, mmol/L</td>
<td>1.70 (1.07)</td>
<td>1.88 (0.75)</td>
<td>0.3</td>
</tr>
<tr>
<td>Apolipoprotein B, g/L</td>
<td>0.78 (0.19)</td>
<td>0.80 (0.20)</td>
<td>0.6</td>
</tr>
<tr>
<td>Insulin, pmol/L</td>
<td>199.4 (133.5)</td>
<td>180.0 (140.0)</td>
<td>0.5</td>
</tr>
<tr>
<td>Glucose, mmol/L</td>
<td>6.77 (2.40)</td>
<td>6.62 (2.91)</td>
<td>0.9</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>8.92 (7.15)</td>
<td>8.04 (6.58)</td>
<td>0.6</td>
</tr>
<tr>
<td>HbA1c, %</td>
<td>6.24 (1.05)</td>
<td>6.51 (1.32)</td>
<td>0.3</td>
</tr>
</tbody>
</table>

LDL: low-density lipoprotein, HDL: high-density lipoprotein, HOMA-IR: homeostatic model of insulin resistance, HbA1c: glycated hemoglobin. Data are presented as mean (± SD) or n (%).
Figures

Figure 1. Baseline Lp(a) levels between (A) surgery and control groups, and (B) women and men. Data are presented as mean ± SEM.

Figure 2. Acute and chronic changes in Lp(a) concentrations in patients who underwent bariatric surgery and in controls. * Significantly different from baseline at p<0.05; ** p<0.01. Data are presented as mean ± SEM.
Figure 3. Changes in Lp(a) concentrations at 6 and 12 months in surgery group according to their Lp(a) concentration at baseline. *Significantly different between tertiles at p< 0.05; # Significantly different of Lp(a) concentration before surgery at p<0.005. Data are presented as mean ± SEM.

Figure 4. Correlation between Lp(a) levels at baseline and at 12 months.
Figure 5. Acute and chronic changes in Lp(a) concentrations in the surgery group according to baseline statin use. * Significantly different from baseline at p< 0.05. Data are presented as mean ± SEM.