VALVULAR HEART DISEASE

Doppler echocardiographic evaluation of prosthetic valve function

Philippe Pibarot,1 Jean G Dumesni2

Owing to its versatile, non-invasive, radiation-free, and low cost nature, Doppler echocardiography is undoubtedly the method of choice to evaluate prosthetic valve function. This evaluation follows the same principles used for the evaluation of native valves, with some important specifics and caveats described in this article. A complete echocardiography includes two dimensional imaging of the prosthetic valve, evaluation of valve leaflet/occluder morphology and mobility, measurement of the transprosthetic gradients and valve effective orifice area (EOA), estimation of the degree of regurgitation, evaluation of left ventricular size and systolic function, and calculation of systolic pulmonary arterial pressure.1

TIMING OF ECHOCARDIOGRAPHIC FOLLOW-UP

Ideally, a baseline postoperative transthoracic echocardiography (TTE) study should be performed 3–12 weeks after surgery, when the chest wound has healed, ventricular function has improved, and anaemia with its associated hyperdynamic state has resolved.1,2 However, if the patient is being transferred and/or may not return, it may be best to perform the study before hospital discharge, although image quality and reliability of measurements are often suboptimal. Annual echocardiography is recommended in patients with bioprosthetic valves after the first 5 years, whereas in patients with mechanical valves, routine annual echocardiography is not indicated in the absence of a change in clinical status.1,2

DETECTION AND QUANTIFICATION OF PROSTHEThIC VALVE STENOSIS

The appearance of a new murmur or symptom in a patient with a prosthetic valve should prompt an urgent TTE study and, if indicated, transoesophageal echocardiography (TOE). However, the initial suspicion of prosthetic valve stenosis may be the incidental finding of abnormally high flow velocities and gradients detected during a routine examination. Table 1 presents the Doppler echocardiographic criteria for the detection and quantification of prosthetic valve stenosis.

Leaflet morphology and mobility

Prosthetic valve stenosis is generally associated with abnormal valve morphology and/or mobility (table 1, figure 1). TTE imaging of the valve occluder is often difficult to obtain because of reverberations and shadowing caused by the prosthetic valve components. TOE can provide improved image quality and thereby improved detection of cusp calcification and thickening, valvular vegetations due to endocarditis, thrombus or pannus, and reduced leaflet/disc/ball mobility (figure 1).2–4 In the case of mechanical prostheses, evaluation of occluder mobility can be attempted with some degree of success by TTE or TOE, but in our experience valve cine-fluoroscopy is definitely the best, most economical, and least invasive technique that can be used for this purpose.

Quantitative parameters

Quantitative parameters of prosthetic valve function include transprosthetic flow velocity and pressure gradients, valve EOA, and Doppler velocity index (DVI).

Transprosthetic velocity and gradient

The principles of interrogation and recording of flow velocity through prosthetic valves are similar to those used in evaluating native valve stenosis.1 One should, however, bear in mind that the fluid dynamics of the mechanical valves may differ substantially from those of the native valve (figure 2). The flow is eccentric in the monoleaflet valves and composed of three separate jets in the bileaflet valves. Because the direction of the transprosthetic jet may be eccentric, multi-windows examination should be carefully performed to detect the highest velocity signal in prosthetic valves. Occasionally, an abnormally high jet gradient corresponding to a localised high velocity may be recorded by continuous wave (CW) Doppler interrogation through the smaller central orifice of the bileaflet mechanical prostheses in the aortic or mitral position (figure 2).5 This phenomenon may lead to an overestimation of gradient and a false suspicion of prosthesis dysfunction.

It is important to keep in mind that high velocity or gradient alone is not proof of intrinsic prosthetic obstruction (table 1) and may be secondary to prosthesis–patient mismatch (PPM), high flow conditions, prosthetic valve regurgitation, or localised high central jet velocity in bileaflet mechanical valves. PPM is not an intrinsic dysfunction of the prosthesis, per se. This problem indeed occurs when the EOA of a normally functioning prosthesis is too small in relation to the patient’s body size (and thus cardiac output requirements), resulting in abnormally high postoperative velocities and gradients.6–8 Significant prosthetic valve regurgitation may also cause the flow rate across the prosthesis to increase, resulting in increased gradients.
Abnormal mechanical valves: occluder that is immobile or with restricted mobility, thrombus or pannus; abnormal biologic valves: leaflet thickening/calcification, thrombus or pannus.

The criteria proposed for these parameters are valid for near normal or normal stroke volume (ie, stroke volume \(50\) to \(80\) ml). These parameters are influenced by chronotropy, left ventricular (LV) function and atrioventricular compliance. These parameters are more affected by low or high flow states including low cardiac output and concomitant prosthetic valve regurgitation. The effective orifice area of mitral prosthesis is not valid when more than mild concomitant aortic or mitral regurgitation is present. See table 2 to obtain the normal reference values of effective orifice area for the different models and sizes of prostheses. The continuity equation method is also valid in the presence of concomitant prosthetic aortic valve regurgitation.

Transprosthetic jet contour and acceleration time

In a normal valve, the contour of the CW flow velocity through the prosthesis generally has a triangular shape, with early peaking of the velocity and a short acceleration time (ie, the time from the onset of flow to maximal velocity (table 1)). With prosthetic valve obstruction, a more rounded velocity contour is seen, with the velocity peaking almost in mid-ejection, and the acceleration time being prolonged. These parameters should be interpreted with caution as they are also highly influenced by left ventricular (LV) chronotropy and function.

Effective orifice area

The EOA of prosthetic aortic valves is calculated with the continuity equation, similar to native aortic valve EOA:

\[
EOA = \frac{(CSA_{LVOT} \times TVI_{LVO})}{TVI_{PRA}}
\]

where \(CSA_{LVOT}\) is the cross-sectional area of the LV outflow tract (LVOT) diameter, \(TVI_{LVO}\) the time–velocity integral obtained by pulsed wave Doppler in the LVOT, and \(TVI_{PRA}\) the time–velocity integral obtained by CW Doppler through the aortic prosthesis. When measuring the EOA of prosthetic aortic valves, a few specific caveats should be taken into consideration. (1) The cross-sectional area of the LVOT is derived from the diameter measurement just underneath the prosthesis from the parasternal long axis zoomed view assuming a circular geometry. This measurement is often difficult because of the reverberations and artefacts caused by the prosthetic stent or sewing ring. Particular attention should be paid not to mistake the inner border of the prosthetic stent/ ring for the inner edge of the LVOT. It is important to emphasise that the substitution of the LVOT diameter by the labelled prosthesis size in the continuity equation is not a valid method to determine the EOA of aortic prostheses. (2) For the recording of LVOT velocity signal, care should be exercised in locating the pulsed wave Doppler sample volume adjacent to the prosthesis while avoiding the region of subvalvular acceleration (this usually requires a position 0.5–1 cm below the sewing ring towards the apex). (3) The continuity equation method is also valid in the presence of concomitant prosthetic aortic valve regurgitation.

The EOAs of mitral prostheses is calculated by the continuity equation using the stroke volume measured in the LVOT. However, this method cannot be applied when there is more than mild concomitant mitral or aortic regurgitation. The pressure half-time method is not valid to estimate the valve EOA of mitral prostheses. Nonetheless, the pressure half-time may be useful if it is significantly delayed (table 1) or shows significant lengthening from one follow-up visit to the other despite similar heart rates.

The cut-off values of EOA proposed in the American Society of Echocardiography guidelines to identify prosthetic valve stenosis have an important limitation, given that they overlap substantially with the normal reference values of EOA of several prostheses models. In our experience, the recognition of prosthetic valve stenosis is better achieved by comparing the measured EOA to the normal reference value of EOA for the model and size of prosthesis implanted in the patient (table 2), rather than applying fixed cut-off values to all patients regardless of the characteristics of their prosthesis. If the measured EOA is less than the reference EOA –1 SD, one should suspect possible stenosis (tables 1 and 2). If the measured EOA is less than reference EOA –2SD, there is a high likelihood of significant stenosis.

Doppler velocity index

The DVI is a dimensionless ratio of the proximal flow velocity in the LVOT to the flow velocity through the aortic prosthesis: DVI=\(V_{LVO}/V_{PRA}\). Time–velocity time integrals may also be used in place of peak velocities to calculate DVI=\(TVI_{LVO}/TVI_{PRA}\). In the case of prosthetic mitral valves, the DVI is calculated by dividing the time–velocity
integral of the transprosthetic flow by that of the LVOT flow: $DVI = TVI_{PrMV} / TVI_{LVOT}$. These parameters can be helpful to screen for valve obstruction, particularly when the cross-sectional area of the LVOT cannot be obtained (table 1).

DETECTION AND QUANTIFICATION OF PROSTHETIC VALVE REGURGITATION

Assessment of severity of prosthetic aortic valve regurgitation is generally much more complex than in native valves because of the high prevalence of paravalvular regurgitation and eccentric jets (figure 3). Care is needed to separate physiologic from pathologic prosthetic regurgitation. Mechanical prostheses have a normal regurgitant volume known as leakage backflow. As opposed to the pathologic regurgitant jets, the normal leakage backflow jets are characterised by being short in duration, narrow, and symmetrical (figure 3). In the case of pathologic regurgitation, it is also important to localise the origin of the regurgitant jet(s) in order to distinguish paravalvular from transvalvular regurgitation.

Imaging considerations

TTE generally provides a good visualisation of the LVOT and of prosthetic aortic regurgitation. TOE may be useful to identify the origin (paravalvular vs transvalvular) of the regurgitant jets in technically difficult TTE studies and to identify the mechanism of regurgitation and the associated complications such as flail bioprosthetic cusp, presence of pannus, thrombus, vegetations or masses interacting with occluder closure, abscess formation, or prosthesis dehiscence. To assess prosthetic mitral regurgitation by TTE is problematic because the left atrium is largely occulted by the metallic components of the prosthesis (figure 4). This problem is more frequent in mechanical valves than in bioprosthetic valves. Hence, TOE should be systematically performed when there is a clinical or TTE suspicion of pathologic mitral regurgitation. TOE is indeed superior to TTE in detecting prosthetic mitral regurgitation and determining its localisation and mechanism.

Figure 1 Evaluation of prosthetic valve leaflet morphology and mobility. (A) Transthoracic echocardiographic (TTE) systolic image of a patient with thickening and reduced mobility of aortic bioprosthetic valve cusps (yellow arrow). (B) TTE view of mitral bileaflet mechanical prosthesis in diastole with a fixed leaflet (green arrow); the other leaflet is still mobile (blue arrow). (C) Transoesophageal echocardiographic (TOE) diastolic image of a patient with obstructed mitral bileaflet mechanical valve (yellow arrow: large size thrombus; white arrow: pannus; blue arrow: reverberation caused by the mobile leaflet; green arrow: immobile leaflet). (D) Three dimensional TOE diastolic view of a mitral bileaflet mechanical valve from the left atrium. This image shows thrombi (black arrows) attached to the hinge mechanism of the valve; the motion of the leaflets is not impaired. Courtesy of Dr John Chambers, Guy’s and St Thomas Hospitals, London UK (panel A) and Dr Steven A Goldstein, Washington Hospital Centre (panel C). AO, aorta; LA, left atrium; RA, right atrium; LV: left ventricle; RV: right ventricle.
Parameters of prosthetic valve regurgitation severity

The same principles and methods used for grading severity of native valve regurgitation can be used for prosthetic valve regurgitation. It must be remembered, however, that there are very limited data on the application and validation of quantitative parameters such as the width of the regurgitant jet or the vena contracta, the effective regurgitant orifice area, and the regurgitant volume in the context of prosthetic valves. Given that all parameters of prosthetic valve regurgitation have important limitations and may be subject to measurement errors, a comprehensive, multi-parametric approach is highly recommended.

Aortic prosthetic valve regurgitation

The ratio of regurgitant jet diameter/LVOT diameter may be overestimated in the case of eccentric or crescent shaped jets and underestimated in the case of jets impinging the wall of the LVOT or the anterior mitral valve (table 3). In contrast to native valves, the width of the vena contracta may be difficult to measure accurately in the long axis view due to the shadowing caused by the prosthesis ring or stent.

For semi-quantitative evaluation of the severity of paravalvular regurgitation, careful imaging of the

Table 2 Normal reference values of effective orifice areas for the prosthetic valves

<table>
<thead>
<tr>
<th>Prosthetic aortic valves</th>
<th>19</th>
<th>21</th>
<th>23</th>
<th>25</th>
<th>27</th>
<th>29</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stentless bioprosthetic valves</td>
<td>Mosaic</td>
<td>1.1±0.2</td>
<td>1.2±0.3</td>
<td>1.4±0.3</td>
<td>1.7±0.4</td>
<td>1.8±0.4</td>
<td>2.0±0.4</td>
</tr>
<tr>
<td>Hancock II</td>
<td>—</td>
<td>1.2±0.2</td>
<td>1.3±0.2</td>
<td>1.5±0.2</td>
<td>1.6±0.2</td>
<td>1.6±0.2</td>
<td>w8</td>
</tr>
<tr>
<td>Carpentier-Edwards Perimount</td>
<td>1.1±0.3</td>
<td>1.3±0.4</td>
<td>1.50±0.4</td>
<td>1.80±0.4</td>
<td>2.1±0.4</td>
<td>2.2±0.4</td>
<td>w8</td>
</tr>
<tr>
<td>Carpentier-Edwards Magna</td>
<td>1.3±0.3</td>
<td>1.5±0.3</td>
<td>1.8±0.4</td>
<td>2.1±0.5</td>
<td>—</td>
<td>—</td>
<td>w9, w10</td>
</tr>
<tr>
<td>Biocor (Epic)</td>
<td>1.0±0.3</td>
<td>1.3±0.5</td>
<td>1.4±0.5</td>
<td>1.9±0.7</td>
<td>—</td>
<td>—</td>
<td>w11, w12</td>
</tr>
<tr>
<td>Mitroflow</td>
<td>1.1±0.2</td>
<td>1.2±0.3</td>
<td>1.4±0.3</td>
<td>1.6±0.3</td>
<td>1.8±0.3</td>
<td>1.8±0.3</td>
<td>w13</td>
</tr>
<tr>
<td>Mechanical valves</td>
<td>Medtronic-FreeStyle</td>
<td>1.2±0.2</td>
<td>1.4±0.2</td>
<td>1.5±0.3</td>
<td>2.0±0.4</td>
<td>2.3±0.5</td>
<td>—</td>
</tr>
<tr>
<td>St Jude Medical Toronto SPV</td>
<td>—</td>
<td>1.3±0.4</td>
<td>1.5±0.5</td>
<td>1.7±0.8</td>
<td>2.1±0.7</td>
<td>2.7±1.0</td>
<td>w8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prosthetic mitral valves</th>
<th>25</th>
<th>27</th>
<th>29</th>
<th>31</th>
<th>33</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical valves</td>
<td>Medtronic-Mosaic</td>
<td>1.5±0.4</td>
<td>1.7±0.5</td>
<td>1.9±0.5</td>
<td>1.9±0.5</td>
<td>—</td>
</tr>
<tr>
<td>Hancock II</td>
<td>1.5±0.4</td>
<td>1.8±0.5</td>
<td>1.9±0.5</td>
<td>2.6±0.5</td>
<td>2.6±0.7</td>
<td>w19</td>
</tr>
<tr>
<td>Carpentier-Edwards Perimount</td>
<td>1.6±0.4</td>
<td>1.8±0.4</td>
<td>2.1±0.5</td>
<td>—</td>
<td>—</td>
<td>w18</td>
</tr>
</tbody>
</table>

| Mechanical valves | St Jude Medical Standard | 1.5±0.3 | 1.7±0.3 | 2.0±0.4 | 2.5±0.4 | 2.6±0.4 | w8 |
| MCRI On-X† | 2.2±0.9 | 2.2±0.9 | 2.2±0.9 | 2.2±0.9 | 2.2±0.9 | w15, w18, w20 |

Effective orifice area is expressed as mean values ± SD available in the literature. Adapted from Pibarot et al with permission of the American Heart Association.

*For the ATS medical valve, the label valve sizes are: 18, 20, 22, 24, 26 mm.
†The On-X valve has just one size for 27–29 mm and 31–33 mm prostheses. In addition, the strut and leaflets are identical for all sizes (25–33 mm); only the size of the sewing cuff is different.
neck of the jet in a short axis view, at the level of
the prosthesis sewing ring (surgically implanted
prostheses) or stent (transcatheter bioprostheses),
allows determination of the circumferential extent
of regurgitation in the case of paravalvular regurgi-
tation (table 3, figure 3). The entrainment of
the regurgitant (paravalvular or transvalvular) jet in
the LVOT may lead to rapid broadening of the jet
just after the vena contracta and thus to over-
estimation of regurgitant severity when using colour
Doppler parameters. Moreover, the estimation of
regurgitation severity becomes more complex and
less reliable when multiple jets are present.

Mitral prosthetic valve regurgitation
At TTE examination, the presence of ‘occult’ mitral
prosthesis regurgitation should be suspected when
the following signs are present: presence of flow

Figure 3 Colour Doppler images of transvalvular and paravalvular regurgitation. The white or black arrows indicate the regurgitant jet(s). (A, B) Transoesophageal echocardiographic (TOE) views of normal physiological regurgitant jets (thin white arrows; A and B) and paravalvular regurgitant jets (thick white arrows; B) in mitral bileaflet mechanical valves. (C) Transthoracic echocardiographic (TTE) short-axis view of mild transvalvular regurgitation in a stented bioprosthetic aortic valve. (D) TOE short axis view of severe transvalvular regurgitation (thick black arrow; one of the cusps is blocked in open position) and mild paravalvular regurgitation (thin black arrow) in a transcatheter bioprosthetic aortic valve. (E) TTE long axis view of moderate paravalvular eccentric regurgitant jet in a stented bioprosthetic aortic valve. (F) TOE long axis view of a mild paravalvular regurgitation in a transcatheter bioprosthetic aortic valve. (G) TTE short axis view of a mild paravalvular regurgitation (one single jet occupying <10% of circumference) in a stented aortic bioprosthetic valve. (H) TOE short axis view of a severe paravalvular regurgitation (two jets occupying >20% of circumference) in a transcatheter bioprosthetic aortic valve. Courtesy of Dr John Chambers, Guy’s and St Thomas Hospitals, London (panels A and E) and Dr Arsené Basmadjian, Montreal Heart Institute (panel B). AO, aorta; LA, left atrium; LV, left ventricle; RA, right atrium.
convergence on the LV side of the prosthesis during systole; increased mitral peak E wave velocity, gradient, and/or DVI; unexplained or new worsening of pulmonary arterial hypertension; and a dilated and hyperkinetic LV (table 4). TOE should be systematically performed when there is a clinical or TTE suspicion of occult mitral regurgitation (figure 4).2

Because prosthetic regurgitation is often characterised by eccentric and/or multiple jets (figure 3), the proximal isovelocity surface area (PISA) method is difficult to achieve and may grossly under- or overestimate regurgitation severity. Given these important limitations, the volumetric method is often preferred to the PISA method for quantitation of prosthesis regurgitation1

SPECIFIC CONSIDERATIONS FOR PARTICULAR TYPES OF VALVE SUBSTITUTES

Stentless aortic valve substitutes
The stentless substitutes (stentless bioprostheses, aortic homografts, and pulmonary autografts) are more likely than stented valves to have minor transvalvular regurgitant jets. In the early postoperative period, the stentless bioprostheses, particularly if implanted by the subcoronary technique, may exhibit higher than expected gradients, which often regress within the next 3 months most likely due to regression of the oedema between the prosthesis and the aortic wall and/or remodelling of the LVOT. In the late postoperative follow-up, the stentless substitutes are more likely than stented bioprostheses or mechanical valves to develop ‘functional’ central aortic insufficiency due to dilatation of the aortic root. It is thus recommended to measure regularly (ie, every 2 years) the dimensions of the aortic root in patients with a stentless aortic valve substitute.

Transcatheter aortic valves
For the measurement of stroke volume and valve EOA of transcatheter bioprosthetic valves, the

Table 3 Doppler echocardiographic criteria for severity of prosthetic aortic valve regurgitation (central and paravalvular)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vena contracta width (mm)*</td>
<td>Usually normal</td>
<td>Usually abnormal†</td>
<td>Usually abnormal†</td>
</tr>
<tr>
<td>Jet width in central jets (% LVOT diameter): colour Doppler*</td>
<td><3</td>
<td>3–6</td>
<td>>6</td>
</tr>
<tr>
<td>Jet density: CW Doppler</td>
<td>Narrow (≤25)</td>
<td>Intermediate (26–64)</td>
<td>Large (≥65)</td>
</tr>
<tr>
<td>Jet deceleration rate (PHT, ms): CW Doppler†</td>
<td>Slow (>500)</td>
<td>Variable (200–500)</td>
<td>Steep (<200)</td>
</tr>
<tr>
<td>LV outflow versus RV outflow ratio: PW Doppler (ratio of stroke volumes or time-velocity integrals)</td>
<td>Slightly increased (>1.2)</td>
<td>Intermediate (>1.5)</td>
<td>Greatly increased (>1.8)</td>
</tr>
<tr>
<td>Diastolic flow reversal in the ascending aorta: PW Doppler</td>
<td>Absent or brief early diastolic</td>
<td>Intermediate</td>
<td>Prominent holodiastolic (end-diastolic velocity >18 cm/s)</td>
</tr>
<tr>
<td>Circumferential extent of paravalvular regurgitation (%)¶</td>
<td><10</td>
<td>10–20</td>
<td>>20</td>
</tr>
<tr>
<td>Regurgitant volume (ml/beat)</td>
<td><30</td>
<td>30–59**</td>
<td>≥60</td>
</tr>
<tr>
<td>Regurgitant fraction (%)</td>
<td><30</td>
<td>30–49</td>
<td>≥50</td>
</tr>
<tr>
<td>LV size§</td>
<td>Normal</td>
<td>Normal/mildly dilated</td>
<td>Dilated</td>
</tr>
</tbody>
</table>

Adapted in part from Zoghbi et al1 with permission of the American Society of Echocardiography.

*Parameter applicable to central jets and is less accurate in eccentric jets and paravalvular jets.
†Abnormal mechanical valves: immobile occluder, dehiscence or rocking (paravalvular regurgitation); abnormal biologic valves: leaflet thickening/calciﬁcation or prolapse, dehiscence or rocking (paravalvular regurgitation).
‡This parameter is inﬂuenced by left ventricular compliance.
¶Applies only to paravalvular regurgitation.
The moderate regurgitation group can be further subdivided into two subclasses: mild-to-moderate regurgitation when regurgitant volume is between 30–44 ml, and moderate-to-severe when it is between 45–59 ml.*

CW, continuous wave; LV, left ventricular; LVOT, LV outflow tract; PHT, pressure half-time; PW, pulsed wave; RV, right ventricular.
LVOT diameter and velocity should be measured immediately proximal to the apical border of the stent. However, if the border of the stent sits low in the LVOT, which may occur more frequently with self-expandable prostheses (such as the CoreValve), it may be preferable to measure the LVOT diameter and velocity within the proximal portion of the stent at approximately 5–10 mm below the bioprosthetic valve leaflets. Paravalvular regurgitation is more common following transcatheter aortic valve implantation versus standard valve replacement (figure 5). Recent studies indeed report incidences of regurgitation of 30–80% with 5–14% being moderate or severe. The severity of paravalvular regurgitations appears to remain stable during follow-up. Although very rare, some cases of delayed migration and embolisation of the prosthesis have been reported following transcatheter valve implantation. The distance between the ventricular end of the prosthesis stent and the hinge point of the mitral valve measured in the parasternal long axis view can be used to monitor the position of the prosthesis during follow-up.

INTERPRETATION OF HIGH TRANSPROSTHETIC GRADIENTS

PPM is the most frequent cause of a high gradient after valve replacement, the other potential causes being a central jet artefact in bileaflet prostheses (figure 2), intrinsic valve dysfunction, high flow states or technical errors. The following algorithm can be used to interpret these high gradients and make the differential diagnosis (figure 5). The first step in the algorithm is to simply calculate the indexed EOA—that is, EOA/body surface area, using the normal reference value of EOA for the type and size of prosthesis having been implanted (table 2). If the result is <0.85 cm²/m² in the aortic position or <1.2 cm²/m² in the mitral position, one can then surmise that PPM is present and that, depending on its degree of severity, it may be partially or totally responsible for the high gradient. PPM is considered to be severe when the indexed EOA is ≤0.65 cm²/m² and ≤0.9 cm²/m² in the aortic and mitral positions, respectively. It is also important to keep in mind that both phenomena—that is, PPM and intrinsic dysfunction—may coexist.

If PPM is not present or not severe enough to explain totally the increased gradient, the next crucial step would be to evaluate leaflet morphology and mobility thoroughly. In the case of mechanical valves, TTE and even TOE often do not allow adequate visualisation of leaflet(s) motion and cine-fluoroscopy should be performed in addition to echocardiography. If leaflet mobility is abnormal (figure 1), dysfunction should be

Table 4 Doppler echocardiographic criteria for severity of prosthetic mitral valve regurgitation (central and paravalvular)

<table>
<thead>
<tr>
<th>Valve structure and motion</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical or bioprosthesis</td>
<td>Usually normal</td>
<td>Usually abnormal</td>
<td>Usually abnormal</td>
</tr>
<tr>
<td>Doppler parameters (qualitative or semi-quantitative)</td>
<td>Colour flow jet area</td>
<td>Small, central jet (usually <4 cm² or <20% of LA area)</td>
<td>Variable</td>
</tr>
</tbody>
</table>

Flow convergence
Jet density: CW Doppler
Jet contour: CW Doppler
Pulmonary venous flow: PW Doppler
Doppler velocity index: PW Doppler

Flow convergence

Jet density: CW Doppler
Jet contour: CW Doppler
Pulmonary venous flow: PW Doppler
Doppler velocity index: PW Doppler

Indirect signs
LV size
LA size
Pulmonary hypertension (SPAP ≥50 mm Hg at rest and ≥60 mm Hg at exercise)

Adapted in part from Zoghbi et al with permission of the American Society of Echocardiography. *Parameter applicable to central jets and is less accurate in eccentric jets. †Abnormal mechanical valves: immobile occluder, dehiscence or rocking (paravalvular regurgitation); abnormal biologic valves: leaflet thickening/calcification or prolapse, dehiscence or rocking (paravalvular regurgitation). ‡Extremely rare (usually <5% of cases). §The moderate regurgitation group can be further subdivided into two subclasses: (1) mild-to-moderate regurgitation when regurgitant volume is between 30 and 59 ml/beat, and (2) moderate-to-severe regurgitation when the regurgitant volume is between 40 and 99 ml/beat.** The moderate regurgitation group can be further subdivided into two subclasses: (1) mild-to-moderate regurgitation when regurgitant volume is between 30 and 59 ml/beat, and (2) moderate-to-severe regurgitation when the regurgitant volume is between 40 and 99 ml/beat.**

CW, continuous wave; LA, left atrial; LV, left ventricular; LVOT, LV outflow tract; PHT, pressure half time; PW, pulsed wave; RV, right ventricular; SPAP, systolic pulmonary artery pressure.
Figure 5 Algorithm for interpreting abnormally high transprosthetic pressure gradients after aortic or mitral valve replacement. BSA, body surface area; DVI, Doppler velocity index; EOA, effective orifice area; FU, follow-up; PPM, prosthesis–patient mismatch. Adapted from Dumesnil and Pibarot,20 with permission of Springer.

Figure 6 Algorithm for the management of patients with left-sided prosthetic valve thrombosis (PVT). TOE, transoesophageal echocardiography; TTE, transthoracic echocardiography. Adapted from Dumesnil and Pibarot21 with permission of American Heart Association and from Pibarot and Dumesnil,22 with permission of Elsevier. *Largest length and area of the thrombus measured from any TOE view.22

PROSTHETIC VALVE THROMBOSIS

If prosthetic valve thrombosis (PVT) is suspected, a comprehensive TTE is performed first, with particular attention directed at evaluation of leaflet mobility and valve haemodynamic function and identification of thrombus and/or pannus (figure 1).21 In the rare case of massive PVT with haemodynamic instability, TOE will not be needed, as this dramatic presentation constitutes a surgical emergency.21 In most other cases, TOE will provide important incremental diagnostic information, which will also guide therapeutic management. It is important to differentiate thrombi from a fibrous pannus, which is usually annular in location and typically appears as a very dense immobile echo (figure 1). Pannus formation is more frequent on aortic than on mitral prostheses and, when observed on mitral prosthetic valves, they most often occur on the atrial side of the prosthesis.

The most important factors to consider for therapeutic decision making (figure 6) are: (1) the presence of prosthetic valve obstruction; (2) the size and mobility of the thrombus; and (3) the clinical and haemodynamic condition of the patient. In non-obstructive left-sided PVT confirmed by TTE or TOE, first line treatment comprises a short course of intravenous heparin with close echocardiographic follow-up plus adjustment of warfarin treatment and addition of aspirin (100 mg).21 However, if the medical treatment is unsuccessful, surgery should be considered in patients with large or mobile thrombi, and thrombolysis with urokinase, streptokinase, or recombinant tissue plasminogen activator is recommended in other patients.21 22 21 22

Urgent or emergent surgery (ie, thrombectomy or valve replacement) is the treatment of choice in patients with obstructive valve thrombosis (figure 6).21 22 However, rescue thrombolysis should be considered in patients unlikely to survive surgery or when surgical treatment is unavailable and the patient cannot be transferred.21 21
Doppler echocardiographic evaluation of prosthetic valve function: key points

- A comprehensive multiparametric approach that integrates several direct and indirect Doppler echocardiographic indices of valve function is key to detect, quantify, and manage prosthetic valve dysfunction appropriately.
- Transoesophageal echocardiography (TOE) may underestimate the presence and severity of prosthetic mitral valve thrombosis and/or regurgitation because of shadowing caused by the valve components. Transoesophageal echocardiography (TOE) is useful to unmask these ‘occult’ abnormalities.
- Assessment of severity of prosthetic aortic valve regurgitation is generally much more complex than in native valves because of the high prevalence of paravalvular regurgitation and eccentric jets.
- A high transprosthetic gradient or velocity does not necessarily imply prosthetic valve dysfunction and, vice versa, a low gradient/velocity does not necessarily indicate absence of valve dysfunction.
- Evaluation of prosthetic leaflet morphology and mobility by TTE, TOE, or other imaging modalities is fundamental to make the differential diagnosis between the three main potential aetiologies of high transprosthetic gradient: prosthesis—patient mismatch, prosthetic valve dysfunction, and localised high gradient.

PROSTHETIC VALVE ENDOCARDITIS

Prosthetic valve endocarditis represents one of the most frequent and severe forms of infective endocarditis. TOE is mandatory in prosthetic valve endocarditis because of its better sensitivity and specificity for the detection of vegetations, abscesses, and paravalvular lesions in this setting. When compared with native valve endocarditis, prosthetic valve endocarditis is characterised by a lower incidence of vegetations and higher incidence of abscesses and paravalvular complications. In mechanical valves, the infection usually involves the junction between the sewing ring and the annulus, leading to paravalvular abscess, dehiscence, pseudoaneurysms, and fistula, whereas in bioprosthetic valve endocarditis, infection is more frequently located on the leaflets, leading to cusp tear, perforation, and vegetations.

The sensitivity and specificity of both TTE and TOE are lower in prosthetic valve endocarditis than in native valve endocarditis. Indeed, the components of the prosthetic valve may hinder the detection of vegetations and abscesses. Moreover, it may be difficult to differentiate a thrombus from a vegetation or bioprosthetic valve degeneration from infective lesions. Consequently, a negative echocardiogram is often observed in prosthetic valve endocarditis and does not rule out the diagnosis of infective endocarditis. If the initial TOE is negative but suspicion for infective endocarditis remains, one should repeat the TOE within 7–10 days and/or use an alternative imaging modality such as multislice computed tomography (CT) and positron emission tomography (PET).

Surgery should be considered in the following situations: failure of medical treatment, haemodynamically significant prosthesis regurgitation or obstruction, especially if associated with deterioration of LV function, large vegetations, paravalvular complications, and development of intracardiac fistulas.

FUTURE PERSPECTIVES

One of the most difficult challenges in the Doppler echocardiographic assessment of prosthetic valve function is the quantitation of prosthetic valve regurgitation, particularly when it is paravalvular, eccentric, and/or multi-jets. The analysis of three dimensional colour Doppler images and/or of the backscattered Doppler power analysis may provide interesting avenues for future research in this regard. Real-time three dimensional TOE also enables en-face visualisation of the prosthesis (figure 1D), which may improve detection and localisation of thrombus/pannus, and of trans- or paravalvular regurgitation. Further studies are also needed to promote the development and rational utilisation of multimodality imaging for the evaluation of prosthetic valve function. Indeed, these modalities may nicely complement Doppler echocardiography for assessment of prosthetic valve obstruction (cine-fluoroscopy and multislice CT), regurgitation (MRI), and endocarditis (PET).

CONCLUSION

The particular context of prosthetic valves poses some major challenges in terms of imaging and flow dynamics that push Doppler echocardiography to its limits. A comprehensive approach that integrates several direct and indirect parameters of valve function measured by TTE and TOE is key to assessing prosthetic valve function
appropriately, and other imaging modalities are often needed to complement or confirm the information obtained by Doppler echocardiography.

Acknowledgements The authors thank Drs Marie-Annick Clavel, Haifa Mahpoub, John Chambers, Steven Goldstein, and Arslane Basmadjian for their contribution to the preparation of this article. Dr Pibarot holds the Canada Research Chair in Valvular Heart Diseases, Canadian Institutes of Health research, Ottawa, Ontario.

Competing interests In compliance with EBAC/EACCME guidelines, all authors participating in Education in Heart have disclosed potential conflicts of interest that might cause a bias in the article. Dr Pibarot has received research grants from Edwards Life Sciences, Medtronic Inc, and Sorin Medical. Dr Dumesnil has no conflict of interest with regard to this work.

Contributors Dr Pibarot and Dr Dumesnil both performed an extensive search, analysis and synthesis of the literature on this topic. Dr Pibarot wrote the first complete draft of the manuscript and Dr Dumesnil reviewed the topic. Dr Pibarot prepared the tables and the figures. Dr Dumesnil has received research grants from Edwards Life Sciences, Medtronic Inc, and Sorin Medical. Dr Dumesnil has no conflict of interest with regard to this work.

Provenance and peer review Prepared the tables and the figures. Dr Dumesnil reviewed the topic. Dr Pibarot wrote the first complete draft of the manuscript and

Contributors Dr Pibarot and Dr Dumesnil both performed an extensive search, analysis and synthesis of the literature on this topic. Dr Pibarot wrote the first complete draft of the manuscript and prepared the tables and the figures. Dr Dumesnil reviewed the manuscript and made several important changes. He also contributed to the design of several figures.

Provenance and peer review Commissioned; internally peer reviewed.

REFERENCES

6. First randomised trial demonstrating the major survival benefit of transcatheter aortic valve implantation in patients who are not candidates for standard aortic valve replacement.

9. This study is one of the first to show that percutaneous aortic valve implantation provides superior haemodynamic performance compared with the surgical bioprosthesis both in terms of transprosthetic gradient and prevention of severe PPM.

13. Recommendations of the working group on valvular heart diseases describe the key principles for optimal Doppler echocardiographic follow-up and management of patients with prosthetic valves.
Doppler echocardiographic evaluation of prosthetic valve function

Philippe Pibarot and Jean G Dumesnil

Heart 2012 98: 69-78
doi: 10.1136/heartjnl-2011-300351

Updated information and services can be found at:
http://heart.bmj.com/content/98/1/69.full.html

These include:

References
This article cites 24 articles, 13 of which can be accessed free at:
http://heart.bmj.com/content/98/1/69.full.html#ref-list-1

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/