La perception du rythme chez les personnes bègues

Mémoire

Mathieu Plamondon

Maîtrise en psychologie - avec mémoire
Maître ès arts (M.A.)

Québec, Canada

© Mathieu Plamondon, 2019
La perception du rythme chez les personnes bègues

Mémoire

Mathieu Plamondon

Sous la direction de :

Simon Grondin, directeur de recherche
Résumé

Cette étude s’inscrit dans le courant de la psychologie de la perception du temps et du rythme et évalue le lien entre un trouble de la parole, nommément le bégaiement, et la capacité à percevoir et maintenir un rythme régulier. Les performances d’un groupe d’adultes bègues (n = 21) sont comparées à celles d’un groupe d’adultes non bègues (n = 24) lors d’activités de comptage explicite. Les séances comportent trois intervalles temporels standards (800 ms, 1200 ms et 1600 ms) et trois conditions expérimentales (compter silencieusement, compter oralement et compter oralement avec un auxiliaire chargé de l’enregistrement).

Les résultats relatifs à la variabilité temporelle révèlent que les participants sont moins bons (ratio de Weber plus élevé) lorsqu’ils comptent silencieusement et lorsqu’ils doivent composer avec des intervalles très longs (1600 ms). L’effet principal de groupe n’est pas significatif, mais l’interaction entre la condition expérimentale, l’intervalle de temps et le groupe s’avère significative. Les adultes bègues ont de moins bonnes performances que les adultes non bègues dans la condition silencieuse avec les intervalles temporels longs (1600 ms). Ceci signale peut-être une limite du traitement de l’information temporelle plus importante chez les personnes bègues lors du traitement de longs intervalles temporels.

Enfin, l’étude s’avère également d’intérêt sous l’angle clinique. Les adultes bègues obtiennent un score d’anxiété situationnelle significativement plus élevé que les adultes non bègues. Ce résultat est cohérent avec ce qui est rapporté dans la littérature scientifique et reflète le niveau élevé d’anxiété ressentie par les adultes bègues.
Abstract

This study assesses the effect of a speech disorder, namely stuttering, on the ability to maintain a steady rhythm. The performance of a group of adult stutterers ($n = 21$) is compared to that of a group of adult non-stutterers ($n = 24$) during explicit counting activities. There are three counting paces (every 800 ms, 1200 ms or 1600 ms) and three experimental conditions (count silently, count orally and count orally in the presence of an assistant).

The results for temporal variability show lower performance (higher Weber ratio) when participants count silently and when they have to deal with very long intervals (1600 ms). There is no main effect of group, but the interaction between the experimental condition, the counting pace and the group is significant. Adult non-stutterers are better than adult stutterers in the silent and long time-interval condition (1600 ms). This finding could be interpreted as an indication of a greater limitation in memory for temporal information in people who stutter.

Finally, the experiment shows that adult stutterers have a significantly higher situational anxiety score than adult non-stutterers. This result is consistent with the scientific literature indicating the high level of anxiety experienced by people who stutter.
Table des matières

Résumé ... iii

Abstract.. iv

Table des matières ... v
 Liste des tableaux .. vii
 Liste des figures .. viii

Remerciements ... ix

Introduction générale .. 1

Chapitre 1 : Recension des écrits ... 2
 Répercussions du rythme sur la parole ... 3
 Déficit du traitement temporel chez les personnes bègues ... 5
 Modèles de traitement de l’information temporelle ... 7
 Facteurs d’influence sur la perception temporelle ... 9
 L’anxiété et le bégaiement .. 10
 Bases neurologiques du rythme et du temps ... 13
 Objectifs .. 14
 Justification du choix des tâches expérimentales ... 15

Chapitre 2 : Méthode ... 17
 Participants .. 18
 Matériel et stimuli ... 19
 Instruments de mesure ... 20
 Procédure .. 20
 Variables dépendantes ... 22

Chapitre 3 : Résultats ... 24
 Données sociodémographiques ... 25
 Ratio de Weber .. 25
 Erreur relative .. 28
 Anxiété situationnelle .. 30
Chapitre 4 : Discussion .. 31
 Ratio de Weber .. 32
 Erreur relative .. 37
 Anxiété situationnelle ... 38
 Limites, recherches futures et implications ... 39

Conclusion générale .. 42

Références ... 43

Annexes .. 48
 Annexe A .. 49
 Annexe B .. 51
 Annexe C .. 52
 Annexe D .. 57
 Annexe E .. 59
 Annexe F .. 60
 Annexe G .. 62
 Annexe H .. 63
 Annexe I .. 64
Liste des tableaux

Tableau 1. Analyse de variance associée aux effets du groupe, de la condition et de l’intervalle de temps sur le ratio de Weber ... 52
Tableau 2. Comparaison de Bonferroni entre les trois intervalles de temps sur le ratio de Weber ... 53
Tableau 3. Comparaison de Bonferroni entre les trois conditions expérimentales sur le ratio de Weber ... 53
Tableau 4. Analyse de variance associée aux effets du groupe et de l’intervalle de temps sur le ratio de Weber lors de la condition A. .. 54
Tableau 5. Comparaison de Bonferroni entre les trois intervalles de temps sur le ratio de Weber lors de la condition A. .. 54
Tableau 6. Analyse de variance associée aux effets du groupe et de l’intervalle de temps sur le ratio de Weber lors de la condition B. .. 55
Tableau 7. Comparaison de Bonferroni entre les trois intervalles de temps sur le ratio de Weber lors de la condition B. .. 55
Tableau 8. Analyse de variance associée aux effets du groupe et de l’intervalle de temps sur le ratio de Weber lors de la condition C. .. 56
Tableau 9. Comparaison de Bonferroni entre les trois intervalles de temps sur le ratio de Weber lors de la condition C. .. 56
Tableau 10. Analyse de variance associée aux effets du groupe, de la condition et de l’intervalle de temps sur l’erreur relative ... 57
Tableau 11. Comparaison de Bonferroni entre les trois intervalles de temps sur l’erreur relative ... 58
Tableau 12. Comparaison de Bonferroni entre les trois conditions expérimentales sur l’erreur relative ... 58
Tableau 13. Analyse de variance associée aux effets du groupe et de la condition sur l’anxiété ressentie ... 59
Tableau 14. Tableau croisé entre le sexe et le groupe expérimental ... 60
Tableau 15. Âge en fonction du groupe expérimental ... 60
Tableau 16. Tableau croisé entre le niveau de scolarité et le groupe expérimental ... 60
Tableau 17. Tableau croisé entre l’occupation principale et le groupe expérimental ... 61
Tableau 18. Tableau croisé entre la consultation passée en orthophonie et le groupe expérimental ... 61
Liste des figures

Figure 1. Le ratio de Weber de chaque groupe en fonction de l’intervalle de temps dans les conditions de comptage silencieux, comptage à voix haute et comptage à voix haute avec expérimentateur...62

Figure 2. L’erreur relative de chaque groupe en fonction de l’intervalle de temps dans les conditions de comptage silencieux, comptage à voix haute et comptage à voix haute avec expérimentateur..........................63

Figure 3. Score d’anxiété en fonction de la condition pour le groupe bêgue et le groupe non bêgue..64
Remerciements

L’accomplissement de ce mémoire fut possible grâce à la contribution de plusieurs personnes-clés à qui je témoigne toute ma gratitude.

J’adresse mes premiers remerciements à mon directeur de recherche, monsieur Simon Grondin, sans qui cette aventure incroyable n’aurait pu être possible. Je le remercie plus particulièrement d’avoir accepté l’orientation générale de mon idée de projet de départ et de m’avoir fait confiance quant à mon autonomie de travail. Merci aussi d’avoir su établir dès le départ un climat d’accueil enrichissant et de confiance lors de nos multiples échanges, de même que d’avoir instauré ces valeurs au sein de votre laboratoire de recherche. Le climat qui y règne, grâce à vous, permet véritablement l’avancement des connaissances et le partage du savoir scientifique. Finalement, je vous remercie de m’avoir fait confiance en m’offrant de belles opportunités professionnelles comme auxiliaire de cours et de correction.

Je remercie aussi l’Association ABC de m’avoir fait confiance pour l’utilisation de leur local à Montréal ainsi que pour m’avoir donné un fort coup de pouce au niveau du recrutement et de la publicité à cet effet. Plus précisément, j’aimerais souligner l’aide de Geneviève Lamoureux, sans qui la réalisation de ce projet n’aurait pas atteint les objectifs fixés au départ en termes de nombre de participants. Merci d’avoir pris de votre temps personnel pour répondre à mes différentes requêtes et demandes.

Je souhaite également remercier mes parents pour leur support moral, leur compréhension et leur confiance face à mon cheminement scolaire. Je remercie pareillement ma copine et mon chat pour leur support social ainsi que leur tolérance pendant mes nombreuses sessions nocturnes de travail.
J’exprime aussi une immense reconnaissance envers tous les collègues m’ayant offert un coup de main ou un œil externe pendant la réalisation de mon projet. Plus exactement, je remercie Vincent Laflamme ainsi que Daniel Fortin Guichard pour leur judicieux support statistique, Alric Pappathomas pour l’aide technique précieuse ainsi que la passation de participants et Félix-Antoine Gravel pour sa participation à la passation de participants.

J’adresse un merci plus spécial à Marjorie Bernier pour son aide et son support externe depuis les années du baccalauréat en psychologie. Probablement sans vous en rendre réellement compte, vous avez su m’inspirer la motivation et l’espoir de la réussite au travers ce cheminement scolaire parfois déroutant et ardu. Merci pour les multiples conversations enrichissantes et pour m’avoir épaulé durant ce processus. Je m’en souviendrai.

Enfin, je remercie bien sûr l’ensemble des participants ayant collaboré à mon projet de recherche. La rencontre d’un bon nombre de personnes bégues en si peu de temps m’a certainement fait grandir et m’aidera assurément quant à mon épanouissement au sein de ce long chemin parfois sinueux qu’est le bégaïement.
Introduction générale

Le bégaiement se définit comme un trouble de la parole se manifestant selon un discours marqué par des répétitions ou des prolongations de sons, de syllabes ou de mots, par des hésitations fréquentes et/ou par des pauses qui perturbent la fluidité de la parole (World-Health-Organization, 2010). Ce trouble de la parole se classifie selon trois grands types : le bégaiement neurologique acquis, le bégaiement développemental et le bégaiement développemental persistant. L’apparition du bégaiement neurologique acquis peut être occasionnée par un accident vasculaire cérébral, un traumatisme crânien ou même une maladie neurodégénérative (Ordre des Audiologistes et des Orthophonistes de l’Ontario, 2014). Pour ce qui est du bégaiement développemental et du bégaiement développemental persistant, ils se manifestent habituellement chez les enfants de deux à cinq ans (Monfrais-Pfauwadel, 2014). Les enfants atteints de la forme non persistante, soit environ 75 % de ces derniers, réussissent généralement à s’en départir naturellement (Yairi & Ambrose, 1999). Cependant, les enfants avec un bégaiement développemental persistant, entre 20 et 25 % des cas, conservent cette atteinte jusqu’à l’âge adulte (Monfrais-Pfauwadel, 2014). La prévalence pour le groupe d’âge de deux à cinq ans, qui se situe entre 2,2 et 5,6 % selon les études, demeure beaucoup plus élevée comparativement à celle établie pour toute la durée de vie (Yairi & Ambrose, 2013). Concrètement, la prévalence du bégaiement à travers la totalité de la population est d’environ 1 % (Craig, Hancock, Tran, Craig & Peters, 2002). Le trouble de la parole du bégaiement constitue une problématique multifactorielle analysée par divers domaines, tels que la biologie, la physiologie, la génétique, la neuroscience, la psychologie, etc. (Guitar, 2006).

La présente étude s’inscrit dans le courant de la psychologie de la perception du temps et du rythme et évalue le lien entre ce trouble de la parole, c’est-à-dire le bégaiement développemental persistant, et la capacité à percevoir et maintenir un rythme régulier en comparant les performances d’un groupe d’adultes bègues à celles d’un groupe d’adultes non bègues.
Chapitre 1 : Recension des écrits
Répercussions du rythme sur la parole

Compte tenu de sa caractéristique temporelle, le rythme se voit directement impliqué dans le complexe processus de la parole en structurant le discours dans le temps. En effet, la production verbale suppose l’exécution de mouvements précis et nécessite la coordination temporelle de plusieurs actions comme la respiration, la phonation, c’est-à-dire la production du voisement (vibration des cordes vocales) nécessaire à l’émission des phones ou des sons, ainsi que l’articulation (Etchell, Johnson & Sowman, 2014; Hulstijn, Summers, Lieshout & Peters, 1992). Park et Logan (2015) émettent trois hypothèses sur ce qui est possiblement à l’origine du bégaiement : (1) un dysfonctionnement de l’organisation temporelle au niveau de la respiration, de la phonation et de l’articulation; (2) la présence d’un asynchronisme dans le temps entre la parole et la planification motrice; (3) ainsi qu’une détérioration de la capacité à générer des séquences temporelles. À ce sujet, une amélioration de la fluidité de la parole chez les personnes bégues est constatée lorsque celles-ci doivent synchroniser leur discours avec une source rythmique externe à elles-mêmes (Etchell et al., 2014).

Plusieurs conditions expérimentales testées dans la littérature scientifique emploient un procédé de synchronisation externe afin d’induire un rythme dans le discours des personnes bégues et ainsi augmenter la fluidité de la parole. Premièrement, l’une de ces techniques consiste à demander aux participants de lire à voix haute différentes phrases et d’écouter simultanément un enregistrement audio d’une personne lisant les mêmes passages. Les personnes bégues se servent de la voix présente dans l’enregistrement comme un modèle rythmique externe pour extraire l’information temporelle qui en ressort et ensuite formuler des énonciations verbales plus fluides (Kent, 1984; Park & Logan, 2015).

Deuxièmement, la lecture ou la récitation en chœur est une autre technique qui ressemble beaucoup à celle mentionnée précédemment. Freeman et Armson (1998) adoptent cette méthode et comparent la fluidité de la parole entre deux conditions de lecture. Dans une condition, les participants bégues lisent individuellement des passages d’écriture présentés pendant dix minutes, tandis que dans l’autre, ils effectuent une lecture en chœur avec un expérimentateur pendant 15 minutes. Les résultats obtenus indiquent une réduction moyenne

Troisièmement, une autre tâche qui améliore la fluidité de la parole consiste à utiliser un métronome afin de marquer la pulsation rythmique lors de la production d’un discours. Hanna et Morris (1977) ont évalué l’impact du métronome sur la production de paroles chez les personnes bègues en comparant leurs discours en fonction de quatre conditions expérimentales : sans métronome, avec un métronome à vitesse rapide, à vitesse lente et à vitesse normale. La vitesse normale est ajustée pour chaque participant en fonction de leur débit articulatoire mesuré en syllabes par minute. La vitesse rapide diffère de +25 % et la vitesse lente de -50 %. Ces chercheurs notent une différence significative au niveau de la fluidité du discours entre la condition sans métronome et les conditions avec métronome. De plus, il semble que ce n’est pas la vitesse employée par le métronome qui influence positivement la fluidité de la parole, mais la rythmicité que celui-ci apporte (Hanna & Morris, 1977). Dans le même ordre d’idées, Fransella et Beech (1965) ont comparé l’influence d’un métronome régulier par rapport à un rythme irrégulier sur la fluidité de la parole. Ils concluent que ce n’est pas un effet de distraction engendré par le bruit du métronome qui augmente la fluidité, mais bien la présence d’un rythme régulier qui favorise la production d’une parole fluide. En d’autres termes, l’amélioration de la fluidité n’a pas été observée avec le rythme irrégulier, mais seulement lors de la condition avec un métronome.

Toutefois, même avec un support rythmique, les personnes bègues expriment une plus grande variabilité temporelle comparativement aux personnes non bègues quant à la production de paroles sous une condition avec métronome (Boutsen, Brutten & Watts, 2000). Malgré le renforcement rythmique extérieur exercé par les signaux présents dans l’environnement sonore, les personnes bègues semblent présenter un déficit au niveau du

Déficit du traitement temporel chez les personnes bègues

À ce sujet, plusieurs études soulignent ce déficit au niveau du traitement temporel chez les personnes bègues en évaluant leurs performances lors de diverses tâches expérimentales telles que la reproduction d’intervalles de temps, l’estimation d’intervalles de temps ainsi que la discrimination d’intervalles de temps et de séquences rythmiques.

Premièrement, au niveau de la reproduction d’intervalles de temps, les adultes non bègues obtiennent de meilleurs résultats que les adultes bègues pour la tâche utilisant le « taper-du-doigt » (Cooper & Allen, 1977). Cette dernière consiste à synchroniser les frappes d’un doigt avec une structure rythmique donnée et à continuer cette action tout en conservant la même cadence lorsque la référence rythmique prend fin (synchronisation-continuation). De leur côté, Falk, Müller et Dalla Bella (2015) notent une moins bonne cohérence et une moins bonne exactitude des reproductions temporelles effectuées par le groupe de personnes bègues comparativement à celles du groupe de personnes non bègues lors de la tâche de synchronisation du « taper-du-doigt ». En d’autres mots, comparativement aux personnes non bègues, les séquences reproduites par les personnes bègues varient davantage d’un essai à l’autre, en plus d’être moins justes par rapport à la durée cible. Les participants de cette étude devaient synchroniser leur « taper-du-doigt » en fonction de trois séquences rythmiques, c’est-à-dire selon un métronome ainsi que selon deux extraits musicaux. Sur l’échantillon de 20 participants bègues, 40 % des enfants et 90 % des adolescents bègues sont significativement moins bons que le groupe de personnes non bègues pour synchroniser leur « taper-du-doigt » selon les différentes conditions rythmiques de l’expérience (Falk et al., 2015). Olander, Smith et Zelaznik (2010) observent que les enfants bègues ont de la difficulté à générer de façon interne des comportements moteurs rythmiquement constants, mais que cet effet demeure accentué et significatif à l’intérieur d’un sous-groupe de leur échantillon d’enfants bègues. Étant donné que seulement une portion des enfants bègues présente un
déficit moteur de synchronisation temporelle, il est possible que cette difficulté représente un facteur qui détermine la persistance du trouble ou non à l’âge adulte (Olander et al., 2010).

Deuxièmement, concernant l’estimation d’intervalles de temps, la majorité des études dans ce domaine compare les performances entre le groupe de personnes bègues et le groupe contrôle selon des tâches qui combinent ou non une composante verbale. La réalisation de contrastes parmi différentes conditions expérimentales permet d’évaluer l’influence de l’aspect verbal au sein de l’estimation temporelle et ainsi mesurer son impact. Par exemple, Ezrati-Vinacour et Levin (2001) ont comparé les estimations d’un intervalle de temps de 30 secondes entre un groupe de 47 personnes bègues et un groupe contrôle de 47 personnes n’ayant pas de trouble de la parole lors de quatre conditions expérimentales. Deux de ces conditions sont non verbales (lire silencieusement et écouter un enregistrement), tandis que les deux autres incluent des composantes verbales (lire à haute voix et converser avec un expérimentateur). Différentes méthodes de production et de reproduction sont employées par les participants pour estimer la séquence temporelle de 30 s. Les résultats obtenus indiquent que les adultes avec un bégaiement qualifié de sévère estiment généralement à la hausse les intervalles de temps par rapport aux autres participants et que cette surestimation temporelle se manifeste seulement lors des conditions incluant une composante verbale productive et non lors de la condition de silence (Ezrati-Vinacour & Levin, 2001).

Dans la même lignée, le sous-groupe d’adultes bègues qui présente la moins bonne fluidité de la parole effectue des estimations d’intervalles de temps plus longues comparativement au sous-groupe d’adultes bègues ayant une meilleure fluidité de la parole (Barasch, Guitar, McCauley & Absher, 2000). De leur côté, Ringel et Minifie (1966) notent une différence significative chez les adultes bègues entre leurs résultats lors de la condition de silence et ceux obtenus dans les autres conditions comportant une composante verbale. Chez les adultes non bègues, cette différence n’est pas constatée. Bref, les observations précédentes laissent croire que la dimension verbale productive retrouvée dans les tâches expérimentales module l’influence du trouble de la parole du bégaiement sur la capacité à estimer adéquatement des intervalles de temps.
Troisièmement, l’influence du trouble de la parole du bégaiement sur la discrimination d’intervalles de temps et de séquences rythmiques s’avère similaire à celle observée avec les deux autres techniques expérimentales mentionnées précédemment. La plupart des recherches adoptant cette approche soulignent des différences significatives entre les personnes bègues et les personnes non bègues quant à leurs capacités à discriminer adéquatement des stimuli sonores ou rythmiques (Herndon, 1966; Wieland, McAuley, Dilley & Chang, 2015). De plus, une étude effectuée auprès d’enfants de 6 à 11 ans constate que cette différence entre les deux groupes estaccentuée lorsque les stimuli utilisés sont des rythmes complexes comparativement à des rythmes simples (Wieland et al., 2015). Les personnes bègues semblent donc avoir plus de difficultés que les personnes non bègues à traiter convenablement les différents intervalles de temps. À cet égard, Etchell, Johnson et Sowman (2014) proposent l’idée que les personnes bègues présentent un déficit au niveau du réseau de la synchronisation interne et que ceux-ci tentent de compenser en utilisant davantage leur réseau de synchronisation externe. Les perturbations au sein du traitement temporel évoquent la possibilité d’un dysfonctionnement de l’horloge interne chez les personnes bègues.

Modèles de traitement de l’information temporelle

Le domaine de la psychologie de la perception du temps regroupe plusieurs modèles fournissant des explications sur le fonctionnement et l’organisation du système de l’horloge interne. Trois d’entre eux sont présentés ici dans le but de faciliter la compréhension du contexte théorique de l’étude.

Premièrement, le modèle développé par Treisman (1963) propose que le traitement temporel s’effectue à l’aide d’une horloge interne composée d’un pacemaker et d’un accumulateur. Le pacemaker émet à un rythme constant une série d’impulsions constituant les unités temporelles. L’accumulateur reçoit les impulsions et se charge de les comptabiliser. La somme des impulsions forme une estimation temporelle subjective qui est conservée dans la mémoire de travail en vue d’être comparée avec les durées temporelles ayant été précédemment sauvegardées dans la mémoire de référence. Selon ce modèle, les erreurs
d’estimations temporelles, lorsqu’elles surviennent, seraient notamment reliées à l’accélération du pacemaker et à sa production d’impulsions (Grondin, 2010a; Yoo & Lee, 2015).

Deuxièmement, le modèle proposé par Gibbon, Church et Meck (1984) offre une version de type traitement de l’information à la théorie du temps scalaire de Gibbon (1977). Cette version inclut la mémoire et le processus décisionnel comme possible source de variabilité. Ce modèle ajoute aussi, au sein de l’horloge interne, le concept de l’interrupteur, c’est-à-dire un dispositif, situé entre le pacemaker et l’accumulateur, qui module la transmission des impulsions entre ces derniers. Ainsi, le jugement temporel s’effectue à l’aide de trois niveaux de traitement. L’horloge interne constitue le premier (pacemaker-interrupteur-accumulateur), tandis que la mémoire (de référence et de travail) et le processus décisionnel (comparateur) sont respectivement le deuxième et le troisième niveau. L’horloge interne produit les unités temporelles en fonction des impulsions émises par le pacemaker, tandis que la mémoire se charge de conserver les multiples représentations des durées avec celles déjà acquises. Par la suite, le processus décisionnel compare les durées emmagasinées en mémoire et émet une réponse conformément au seuil de décision établi (Droit-Volet & Wearden, 2003).

La théorie du temps scalaire présume que la variabilité du temps estimé augmente de façon linéaire avec la durée de l’intervalle de temps mesuré. Du coup, les fluctuations associées au rapport temporel sont censées demeurer constantes en fonction de la durée des intervalles de temps (Grondin, 2001). Cependant, la fraction de Weber, c’est-à-dire le ratio entre le seuil différentiel et la magnitude des intervalles, demeure plus élevée lors d’intervalles de temps longs comparativement à des intervalles courts. À ce sujet, Grondin observe une violation de la propriété scalaire se manifestant entre 1 s et 1,9 s et constate une plus grande variabilité des réponses lorsque des intervalles de temps longs sont utilisés (Grondin, 2010b; 2012; Grondin, Laflamme & Mioni, 2015). En outre, Grondin (2014) souligne que cette violation ne résulte pas de la méthodologie employée pour évaluer le jugement temporel. En effet, la violation de la propriété scalaire s’observe au sein de multiples protocoles regroupant tant des tâches de perception ou de production, des stimuli
auditifs ou sonores, que des intervalles temporels simples ou multiples. Selon ce modèle, les erreurs de jugement temporel peuvent être engendrées par des fluctuations quant à l’émission des impulsions du pacemake, mais aussi en fonction du niveau d’éveil de la personne (Grondin, 2017; 2018).

Facteurs d’influence sur la perception temporelle

La littérature scientifique dans le domaine de la psychologie de la perception du temps souligne plusieurs erreurs qui peuvent affecter la justesse du traitement temporel effectué par l’horloge interne. Par exemple, un déficit au niveau de l’interrupteur de l’horloge interne peut être provoqué par le système de la porte attentionnelle, c’est-à-dire par le biais des mécanismes attentionnels. Lorsque l’attention est orientée sur le temps, l’interrupteur se ferme et les impulsions émises par le pacemaker s’amassent dans l’accumulateur, ce qui donne lieu à une surestimation temporelle (Grondin, 2010a). À ce sujet, les personnes souffrant d’anxiété sociale concentrent davantage leur attention sur le temps et le perçoivent comme s’il passait plus lentement. L’augmentation du nombre d’impulsions est causée par la charge émotionnelle élevée ressentie par ces personnes lors des différentes situations sociales (Yoo & Lee, 2015). Par ailleurs, les personnes avec une anxiété sociale élevée
manifestent une perception temporelle disproportionnée et ont de la difficulté à maintenir une représentation stable des durées (Mioni, Stabulum, Prunetti & Grondin, 2016; Yoo & Lee, 2015).

Chez les personnes bégues, la frustration, le stress anticipé, l’anxiété de parler et la pression du temps qu’ils ressentent les amènent à développer une sorte d’hypervigilance et à focaliser leur attention sur le temps qui passe (Ezrati-Vinacour, Levin, 2001). En outre, les sentiments déplaisants (anxiété, stress, peur, etc.) reliés à la communication verbale semblent jouer un rôle au niveau de la surestimation temporelle chez les personnes bégues (Barasch et al., 2000; Ringel & Minifie, 1966).

L’anxiété et le bégaiement

Compte tenu de tout ce qui précède, non seulement le bégaiement influence le traitement temporel, mais l’anxiété qui apparaît fréquemment avec ce trouble de la parole semble aussi avoir un impact sur cette habileté perceptive. Afin de simplifier la compréhension du contexte théorique de l’étude, quelques définitions et clarifications sont présentées dans les prochains paragraphes relativement aux différentes dimensions de l’anxiété.

habituellement entre l’âge de 14 et 16 ans (Kessler et al., 2005). L’âge médian d’apparition pour ce trouble est 13 ans (Kessler et al., 2005), et sa prévalence se situe entre 8 et 13 % tout au long de la vie (Ruscio et al., 2008).

Le trouble de la parole du bégaïement semble être associé à des aspects similaires de l’expérience de l’anxiété sociale, soit la peur d’une évaluation négative par autrui, les biais attentionnels, les pensées négatives ainsi que l’utilisation de comportements d’évitement et de sécurité (Iverach & Rapee, 2014). Par exemple, lors d’une situation sociale, la personne bègue adopte un processus réflexif anticipatoire en craignant que les personnes présentes à cet instant puissent entendre, ou même voir son bégaïement. Cette représentation mentale erronée active des croyances négatives et encourage le maintien de comportements de sécurité ou d’évitement inappropriés lors de situations sociales semblables (Iverach, Rapee,

Sous ce rapport, entre 22 % et 60 % des adultes avec le trouble de la parole du bégaiement présentent les critères diagnostiques pour le trouble de l’anxiété sociale (Iverach et al., 2017). Similairement, Blumgart, Tran et Craig (2010) notent que 40 % des adultes bègues au sein de leur étude satisfont les critères sous-tendant un diagnostic du trouble de l’anxiété sociale. À cet égard, Craig (2014) prétend que cette anxiété commence à se développer dès l’enfance chez les personnes bègues pour ensuite augmenter graduellement, et qu’à partir de l’adolescence ou de l’âge adulte, le risque d’anxiété chronique devient réel. Selon une méta-analyse effectuée par Craig et Tran (2014), la majorité des adultes bègues présente des traits d’anxiété au moins modérément élevés ainsi qu’une anxiété sociale considérablement élevée, et ce, avec des tailles d’effet de 0,57 pour les traits et 0,82 pour l’anxiété sociale. De plus, les adolescents bègues rapportent des plus hauts niveaux d’états d’anxiété, un plus grand nombre de traits d’anxiété et plus d’anxiété sociale comparativement aux adolescents non bègues.

Les problèmes d’anxiété ne découlent pas du tempérament de la personne en particulier, mais se développent tout au long de la vie comme un effet du bégaiement en fonction des événements négatifs occasionnés par ce trouble de la parole (Kefalianos, Onslow, Block, Menzies & Reilly, 2012). À ce propos, les recherches récentes constatent un taux élevé d’anxiété sociale chez les adultes bègues et soulignent l’importance d’intégrer aux thérapies en orthophonie un segment qui vise à traiter ces symptômes (Craig, 2014). D’ailleurs, les personnes bègues manifestent des comportements d’hypervigilance lorsqu’ils sont exposés à des stimuli qui provoquent de l’anxiété. Cependant, cet effet est uniquement observé lorsque ceux-ci doivent répondre de façon verbale (Craig, 2014). Bref, le trouble de la parole du bégaiement, en plus d’influencer directement le traitement temporel, affecte les
personnes qui en sont atteintes en les plaçant dans des conditions ou des états qui les défavorisent quant à leurs habiletés temporelles perceptives.

Bases neurologiques du rythme et du temps

Le « réseau du rythme » inclut le putamen, l’aire motrice supplémentaire, le cortex prémoteur et l’aire auditive dans le gyrus temporal supérieur bilatéral (Chang, Chow, Wieland & McAuley, 2016). L’aire motrice supplémentaire joue un rôle crucial dans le traitement temporel d’intervalles de temps, autant pour les intervalles de moins de 1 s que pour ceux supérieurs à 1 s (Grondin, 2010a). À ce sujet, Chang et al. (2016) observent que le cerveau des enfants bègues comporte une connexion cérébrale atténuée entre le putamen et l’aire motrice supplémentaire par rapport à celle des enfants non bègues. Le fonctionnement général des connexions entre le putamen et les régions du « réseau du rythme » demeure plus faible chez les enfants bègues, lorsque comparé à des enfants non bègues (Chang et al., 2016).

De leur côté, les ganglions de la base semblent aussi impliqués dans le traitement temporel au niveau de l’encodage des intervalles de temps, principalement du côté du putamen et du noyau caudé (Grondin, 2010a). Les ganglions de la base sont probablement les principales structures sous-corticales impliquées dans le traitement d’informations temporelles (Grondin, 2010a). Toyomura, Fujii et Kurik (2011) affirment que les ganglions de la base ont la fonction de générer un rythme de façon interne, c’est-à-dire sans référence externe. Au niveau de la parole, cet ensemble de structures cérébrales fournit un rythme temporel interne qui optimise la perception et la production de la parole en synchronisant les mouvements nécessaires à l’action verbale. Chez les personnes bègues, ce réseau sous-
cortical mobilisé dans la perception du rythme semble fonctionner différemment de celui des personnes non bègues (Chang et al., 2016). En effet, les personnes bègues présentent un dysfonctionnement au niveau du système neural cortical et sous-cortical (Neef et al., 2010). De plus, l'activation des ganglions de la base est significativement plus basse chez les adultes bègues lors d’une tâche de discours normal, mais augmente au même niveau que les adultes non bègues lors d’une tâche de discours pourvue d’un support métronomique (Toyomura et al., 2011). Plus précisément, l’augmentation de l’activation du gyrus temporal supérieur entre les conditions avec support rythmique (métronome ou lecture en chœur) et la condition sans support rythmique (discours normal) demeure beaucoup plus prononcée chez les adultes bègues que chez les adultes non bègues.

La présence d’un déficit d’activation parmi les structures cérébrales responsables de la synchronisation interne temporelle des mouvements supporte la théorie qui suggère une perturbation à ce niveau chez les personnes bègues. Cette activation problématique se retrouve également lors d’un état au repos sans composante verbale et indique que ce déficit ne concerne pas seulement la production de la parole, mais aussi le traitement temporel en général (Etchell, Johnson & Sowman, 2014). Bref, les recherches dans le domaine des neurosciences montrent également des différences entre personnes bègues et personnes non bègues quant aux structures cérébrales impliquées dans le traitement temporel. Ceci tombe en accord avec le domaine de la psychologie de la perception du temps en affirmant que les personnes bègues semblent être moins habiles et/ou moins compétentes que les personnes non bègues dans les tâches expérimentales qui requièrent un certain traitement temporel.

Objectifs

L’objectif principal de la présente étude est de vérifier si le groupe d’adultes bègues diffère du groupe contrôle composé d’adultes non bègues lors d’activités de comptage explicite. L’hypothèse posée est que la variabilité temporelle sera plus élevée chez le groupe d’adultes bègues par rapport à celle du groupe contrôle.
Un deuxième objectif consiste à comparer les performances du groupe d’adultes bègues entre les conditions qui comportent une composante verbale (à voix haute), par opposition à la condition où le comptage est interne (silencieux). En tenant compte de la littérature à ce sujet, il est attendu que la variabilité temporelle sera plus élevée lors des conditions avec une composante verbale.

Un troisième objectif évalue l’impact de l’anxiété situationnelle lors de l’exécution des tâches expérimentales. Il est attendu que la variabilité temporelle sera plus élevée, chez les adultes bègues, dans la condition avec anxiété situationnelle que dans les deux conditions où il n’y a pas d’anxiété situationnelle.

Le dernier objectif consiste à confirmer ou infirmer le constat noté par Grondin et al. (2015), à savoir que la variabilité temporelle devrait être plus élevée lors des conditions expérimentales qui utilisent les intervalles de temps longs (1600 ms) comparativement aux conditions avec les intervalles de temps courts (800 ms).

Justification du choix des tâches expérimentales

Les tâches expérimentales de cette étude sont adaptées de celles employées par Grondin et al. (2015). Contrairement à ce qui est habituellement retrouvé dans le domaine de la psychologie de la perception du temps, le protocole de la présente recherche n’utilise pas les méthodes de production, de reproduction ou de discrimination d’intervalles de temps pour comparer les deux groupes de participants. Les tâches se décrivent plutôt comme des activités de comptage explicite qui nécessitent le maintien d’un rythme régulier.

L’action de compter à une vitesse constante implique inévitablement un certain traitement temporel du rythme. Celui-ci est passablement automatisé, du moins lors de la condition silencieuse, mais risque d’être influencé, chez le groupe d’adultes bègues, par l’action verbale et la composante de l’anxiété situationnelle retrouvées dans les deux autres conditions de l’étude. En outre, étant donné le déficit du traitement temporel souligné
précédemment chez les personnes bègues, il est possible que l’exécution du comptage explicite soit altérée même lors de la condition silencieuse. Bref, l’adoption de ce type de tâche expérimentale se voit comme un outil ou un instrument de mesure qui permettra d’évaluer différemment les capacités des personnes bègues quant à la perception et à la production régulière d’un rythme donné.
Chapitre 2 : Méthode
Participants

Au total, 23 adultes bègues et 27 adultes non bègues sont recrutés dans le cadre de la présente étude. Pour les participants du groupe bègue, un recrutement est réalisé à l’aide d’une collaboration établie avec l’Association des Bègues du Canada (ABC), située à Montréal, et par le biais de la Clinique d’Enseignement en Orthophonie de l’Université Laval. Le recrutement des adultes non bègues s’est effectué par l’envoi de courriels « de masse » à la population de l’Université Laval ainsi que par le partage d’une annonce de recrutement sur le réseau Facebook du chercheur principal. Cette méthode de recrutement a également permis de rejoindre 12 des participants qui composent le groupe bègue.

Les participants bègues ne doivent pas présenter de troubles de la parole autres que le bégaiement. De plus, ce dernier doit être apparu à l’enfance et avoir persisté jusqu’à l’âge adulte. Le bégaiement ne doit pas être non plus le résultat d’un accident et/ou d’un traumatisme crânien quelconque. Pour ce qui est de l’ensemble des participants, aucun d’entre eux ne doit présenter de troubles psychologiques, physiques ou cognitifs pouvant interférer avec l’accomplissement des tâches expérimentales. À ce propos, la totalité des participants ne doit pas rapporter souffrir de troubles auditifs et/ou moteurs. Ces critères d’exclusion sont vérifiés une première fois lors de la prise de contact avec les participants, et une seconde fois au début de la première expérimentation à l’aide du formulaire de consentement.

De ces 50 participants, cinq sont retirés de l’échantillon. Deux d’entre eux ont décidé de ne pas compléter l’ensemble des séances (un adulte bègue et un adulte non bègue). Une participante non bègue a présenté plusieurs difficultés langagières (incompréhension marquée pour la langue française) à plusieurs étapes de l’expérimentation, rendant ainsi inadéquates ses performances lors des différentes séances. Finalement, un participant bègue et une participante non bègue ayant mal exécuté une ou plusieurs de leurs séances sont
En effet, ces derniers n’ont pas adéquatement compris la procédure à suivre et ont dû interrompre ou recommencer leur essai à plusieurs reprises.

L’échantillon sur lequel reposent les analyses statistiques comprend donc 21 adultes bègues (15 hommes et 6 femmes) et 24 adultes non bègues (13 hommes et 11 femmes). La moyenne d’âge pour les deux groupes est de 26 ans, avec une étendue de 20 à 41 ans. Une compensation monétaire de 30 $ est offerte aux participants pour la passation des trois séances; une compensation de 50 $ est offerte à un participant afin de couvrir les frais occasionnés par une plus grande distance de déplacement.

Matériel et stimuli

Les séances se déroulent sur deux sites d’expérimentation. Un site est situé au Laboratoire de recherche en psychologie de la perception de l’Université Laval, tandis que le second se trouve à l’Association ABC de Montréal. Tel que mentionné précédemment, les tâches expérimentales de cette étude sont similaires à celles utilisées par Grondin et al. (2015). Les participants sont assis dans une salle convenablement éclairée devant un ordinateur muni d’un moniteur exécutant les expérimentations. Deux signaux auditifs successifs de 10 ms marquent les intervalles de temps présentés à l’aide d’un système de son de marque *Altec Lansing ATP3*. Les sons de 1 kHz sont émis à une puissance approximative de 70 dB SPL.

1 Afin d’éliminer les essais manqués et aberrants au sein des 20 productions par intervalle de temps chez chaque participant, la méthode suivante est employée. Celle-ci a aussi servi à identifier les deux participants retirés de l’analyse en raison de leur trop grand nombre de productions erronées. Tout d’abord, l’étendue interquartile est calculée pour chaque participant en fonction de la condition et de l’intervalle de temps. Par la suite, la valeur absolue de la différence entre chaque intervalle produit et le quartile le plus proche sont aussi calculés. Cette valeur divisée par l’étendue interquartile constitue l’indice utilisé pour identifier les données brutes extrêmes présentes dans les productions de chaque participant. Ainsi, 95,75 % des données brutes recueillies auprès des 45 participants sont conservées pour réaliser les analyses statistiques concernant le ratio de Weber et l’erreur relative.
Un second système de haut-parleurs portables de marque Creative A60 est utilisé lors des séances qui se déroulent au local d’expérimentation à Montréal. La puissance sonore est préalablement ajustée et balancée avec celle émise par le système de haut-parleurs installé au laboratoire de l’Université Laval. Un ordinateur portable est utilisé pour exécuter l’expérimentation dans le local de Montréal. Enfin, le logiciel SPSS 23 est utilisé pour la réalisation de l’ensemble des analyses statistiques de cette étude.

Instruments de mesure

Questionnaire sociodémographique. Ce court questionnaire maison (voir Annexe A) comprend 10 questions au total : (a) cinq questions qui visent à recueillir des informations générales comme le sexe, l’âge, le dernier niveau de scolarité complété, etc., et (b) cinq questions ayant comme objectif de récolter des renseignements au niveau de la sévérité du bégaiement des participants bègues ainsi que sur leur utilisation ou non de services en orthophonie.

Questionnaire d’évaluation personnelle IASTA (Forme Y-1). Ce questionnaire (voir Annexe B), traduit et adapté par Gauthier et Bouchard (1993), est utilisé afin de mesurer le niveau d’anxiété situationnelle des participants avant la passation des diverses tâches expérimentales. Celui-ci a été conçu spécialement dans le but d’évaluer l’anxiété ressentie par les sujets à l’instant même où ceux-ci le remplissent. Ce questionnaire se compose de 20 énoncés pour lesquels les participants doivent répondre en utilisant une échelle de type Likert qui varie entre 1 et 4 (1 = pas du tout, 2 = un peu, 3 = modérément et 4 = beaucoup).

Procédure

Au début de chaque essai, un signal auditif est présenté quatre fois de suite aux participants afin de délimiter trois intervalles de temps égaux ayant une durée de 800 ms, de 1200 ms ou de 1600 ms selon le bloc d’essais. Les participants doivent utiliser l’intervalle de temps préalablement présenté lorsqu’ils comptent de « 1 » jusqu’à un chiffre cible. Ceux-ci
sont informés de peser une fois sur la barre d’espacement d’un clavier d’ordinateur en comptant le chiffre « 1 » et une autre fois en terminant sur le chiffre cible de l’expérimentation en question. Le chiffre cible est « 16 » pour les blocs qui utilisent les intervalles de temps de 1600 ms, « 21 » pour ceux avec les intervalles de temps de 1200 ms et « 31 » avec les intervalles de temps de 800 ms. Dans tous les cas de l’étude, la durée théorique, y(x-1), est de 24 s, soit 24 000 ms : 800(31-1), 1200(21-1) et 1600(16-1).

L’étude s’échelonne sur trois sessions d’environ 50 minutes composées de trois blocs de 20 essais. Il y a une condition expérimentale par session, divisée en trois blocs d’essais pour les trois intervalles de temps utilisés (800 ms, 1200 ms et 1600 ms). L’ordre des différentes sessions et des blocs expérimentaux est contrebalancé entre les participants. Une seule séance peut être exécutée par jour afin d’éviter l’influence d’effets indésirables tels que la fatigue, l’apprentissage ou l’ennui.

La première session est celle de la condition « silence » pendant laquelle les participants sont appelés à compter dans leur tête jusqu’au chiffre cible selon les trois intervalles de temps à l’étude. Lors de la deuxième session, c’est-à-dire la condition « compter oralement », les participants répètent le même procédé, mais en comptant à voix haute. Pour ce qui est de la troisième session, celle-ci conserve la composante verbale de la deuxième condition (compter oralement) en y ajoutant l’influence de l’anxiété situationnelle.

Durant la troisième condition, les participants accomplissent la même tâche temporelle que la deuxième condition, mais cette fois-ci, avec la présence d’un assistant de recherche dans la même pièce chargé d’enregistrer leurs performances dans les trois blocs de 20 essais. Cette dernière condition a pour but d’induire de l’anxiété situationnelle chez les participants et ainsi mesurer l’impact de cette variable sur les activités de comptage explicite.

À cet égard, les participants doivent remplir, après avoir reçu les consignes expérimentales de chaque session, le « Questionnaire d’évaluation personnelle » qui vise à mesurer l’anxiété situationnelle ressentie au moment de réaliser l’expérience.
Essentiellement, le groupe d’adultes bègues et le groupe contrôle composé d’adultes non bègues sont comparés en fonction de leurs performances temporelles lors des trois conditions expérimentales.

Par ailleurs, les véritables buts visés par la passation du « Questionnaire d’évaluation personnelle » et la troisième condition expérimentale, c’est-à-dire celle incluant la présence d’un assistant de recherche, demeurent cachés aux participants durant toute la durée du processus de cueillette de données. Un formulaire de consentement post-facto administré à la fin de la troisième rencontre sert à informer les participants de ces deux objectifs dissimulés et à valider leur approbation finale à l’étude.

Variables dépendantes

Trois variables dépendantes sont principalement analysées : le ratio de Weber, l’erreur relative et le score obtenu lors de la passation du « Questionnaire d’évaluation personnelle ». Le ratio de Weber représente la variabilité, soit l’écart-type, de l’intervalle moyen produit lors des 20 essais d’une condition divisée par la durée théorique de l’intervalle de temps : y(x-1), soit 24 s. Quant à elle, l’erreur relative correspond à la durée moyenne des intervalles produits moins la durée théorique de l’intervalle de temps, y(x-1), ensuite divisée par cette même durée théorique (24 s). Un haut ratio de Weber symbolise une grande variabilité temporelle au niveau des réponses émises par le participant, tandis qu’une erreur relative négative signifie que celui-ci produit généralement des intervalles de temps plus courts que la durée théorique cible.

Concernant la troisième variable dépendante, le score obtenu lors de la passation du « Questionnaire d’évaluation personnelle » permet de déterminer si la dernière session expérimentale induit véritablement de l’anxiété situationnelle chez les participants ou, à l’inverse, si le niveau d’anxiété situationnelle demeure constant tout au long des sessions de l’étude. Le score peut varier entre 20 (minimum) et 80 (maximum). L’obtention d’un haut score correspond à un degré élevé d’anxiété situationnelle ressentie. Dans le cas où une
différence est observée, il est attendu que les performances temporelles soient significativement moins bonnes lors de la session avec présence d’un expérimentateur dans la même pièce par rapport aux deux autres sessions.
Chapitre 3 : Résultats
Données sociodémographiques

Afin de déterminer s’il y a des différences entre les deux groupes de participants relativement au sexe, au niveau de scolarité et à leur occupation principale, deux tests exacts de Fisher et un test de khi-carré sont réalisés. Les résultats montrent l’absence de différence significative quant au sexe, $\chi^2 (1, N = 45) = 1,420, p = 0,356$, au niveau de scolarité $(p = 0,126)$, et à l’occupation principale $(p = 0,964)$ (voir Annexe F). Dans le but de vérifier la présence d’une différence au niveau de l’âge en fonction du groupe expérimental, un test t sur échantillons indépendants est réalisé. Les résultats marquent l’absence de différence significative entre les deux groupes relativement à l’âge des participants, $t(38) = -0,153, p = 0,879$ (voir Annexe F).

Ensuite, un test de khi-carré est effectué sur le groupe expérimental selon la consultation antérieure en orthophonie. Les résultats soulignent une différence significative entre le groupe de personnes bègues et le groupe de personnes non bègues, $\chi^2 (1, N = 45) = 30,364, p < 0,05$. En effet, 2 adultes bègues contre 19 ont rapporté ne jamais avoir consulté en orthophonie. À l’inverse, seulement 2 adultes non bègues contre 22 ont noté avoir déjà consulté en orthophonie dans le passé (voir Annexe F).

Ratio de Weber

Dans le but de comparer la variabilité temporelle des dénombrements produits par les deux groupes par rapport à la durée cible, et ce, en fonction de la condition et de l’intervalle de temps en vigueur lors du comptage, une analyse de variance (ANOVA) à plan factoriel 2 (groupes) × 3 (conditions expérimentales) × 3 (intervalles de temps) avec mesures répétées est effectuée sur le ratio de Weber. Les facteurs des conditions expérimentales et des intervalles de temps sont à mesures répétées, alors que le facteur du groupe est non répété.
Le test de Mauchly révèle la violation du postulat de sphéricité pour la totalité des effets intra-sujets sur le ratio de Weber. La correction Greenhouse-Geisser est donc appliquée pour l’ensemble de ces analyses.

Les résultats de l’ANOVA présentés dans le Tableau 1 (voir Annexe C), et illustrés par la Figure 1 (voir Annexe G), indiquent une absence d’effet principal significatif du groupe expérimental, $F(1, 43) = 2,751, p = 0,104, \eta^2_p = 0,060$. L’effet principal de la condition est significatif, $F(1,407, 60,510) = 12,217, p < 0,001, \eta^2_p = 0,221$. En outre, l’effet d’interaction entre le groupe expérimental et la condition est significatif, $F(1,407, 60,510) = 5.282, p < 0,05, \eta^2_p = 0,109$.

L’effet principal de l’intervalle de temps est significatif, $F(1,427, 61,354) = 38,712, p < 0,001, \eta^2_p = 0,474$. De son côté, l’effet d’interaction entre l’intervalle de temps et le groupe expérimental n’est pas significatif, $F(1,427, 61,354) = 0,240, p = 0,711, \eta^2_p = 0,006$. L’effet d’interaction entre la condition et l’intervalle de temps n’est pas significatif, $F(2,416, 103,882) = 1,260, p = 0,291, \eta^2_p = 0,028$. L’effet d’interaction entre la condition, l’intervalle de temps et le groupe expérimental est significatif, $F(2,416, 103,882) = 3,197, p < 0,05, \eta^2_p = 0,069$.

Afin de déterminer quels intervalles temps (800 ms, 1200 ms et 1600 ms) diffèrent plus spécifiquement les uns des autres relativement au ratio de Weber, des contrastes a posteriori sont réalisés avec une correction de Bonferroni. Les résultats présentés dans le Tableau 2 (voir Annexe C) indiquent que le ratio de Weber, c’est-à-dire la variabilité temporelle, est moins élevé lorsque l’intervalle de temps est de 800 ms ou de 1200 ms que lorsqu’il est de 1600 ms ($p < 0,001$). La différence entre l’intervalle de temps de 800 ms et celui de 1200 ms n’est pas significative ($p = 0,197$).

Dans le but de situer plus précisément les différences significatives parmi les trois conditions de l’étude (A, B et C), des contrastes a posteriori sont effectués avec une correction de Bonferroni. Les résultats obtenus (voir le Tableau 3 à l’Annexe C) indiquent
que le ratio de Weber est moins élevé lors de la condition B (compter oralement) comparativement à la condition A (compter silencieusement) ($p < 0,01$). De plus, le ratio de Weber est aussi moins élevé lors de la condition C (compter oralement en présence d’un auxiliaire de recherche) par rapport à la condition A ($p < 0,01$). Les résultats soulignent l’absence de différence significative entre la condition B et la condition C ($p = 1,0$).

Afin de décomposer l’effet principal du groupe expérimental au sein de la triple interaction significative, une analyse de variance (ANOVA) à plan factoriel 2 (groupes) × 3 (intervalles) avec mesures répétées est réalisée pour chacune des trois conditions expérimentales. Le facteur des intervalles de temps est à mesures répétées, alors que celui du groupe est non répété. Un test de Mauchly souligne la violation du postulat de sphéricité pour les effets intra-sujets. La correction Greenhouse-Geisser est donc utilisée pour ces analyses.

Les résultats de l’ANOVA de la condition compter silencieusement (voir le Tableau 4 à l’Annexe C) marquent bien la présence d’un effet principal significatif du groupe expérimental, $F(1, 43) = 4,895, p < 0,05, \eta^2_p = 0,102$. L’effet principal de l’intervalle de temps est significatif, $F(1,327, 57,062) = 12,782, p < 0,001, \eta^2_p = 0,229$, tandis que l’interaction entre l’intervalles de temps et le groupe expérimental ne l’est pas, $F(1,327, 57,062) = 2,486, p = 0,111, \eta^2_p = 0,055$. Dans le but de situer plus précisément les différences parmi les trois intervalles temporels de la condition compter silencieusement, des contrastes a posteriori sont effectués avec une correction de Bonferroni (voir le Tableau 5 à l’Annexe C). Les résultats obtenus révèlent que le ratio de Weber est significativement plus élevé lorsque l’intervalles de temps est de 1600 ms que lorsqu’il est de 800 ms ou de 1200 ms ($p < 0,05$). La différence entre l’intervalles de temps de 800 ms et celui de 1200 ms n’est pas significative ($p = 0,097$).

Les résultats de l’ANOVA de la condition compter oralement (voir le Tableau 6 à l’Annexe C) indiquent une absence d’effet principal significatif du groupe expérimental, $F(1, 43) = 1,926, p = 0,172, \eta^2_p = 0,043$. L’effet principal de l’intervalles de temps est significatif, $F(1,586, 68,215) = 12,598, p < 0,001, \eta^2_p = 0,227$, tandis que l’effet d’interaction entre l’intervalles de temps et le groupe expérimental ne l’est pas, $F(1,586, 68,215) = 0,669,$
$p = 0,482, \eta^2_p = 0,015$. Afin de déterminer quels intervalles de temps diffèrent significativement des autres, des contrastes a posteriori sont réalisés avec une correction de Bonferroni. Les résultats présentés dans le Tableau 7 (voir Annexe C) indiquent que le ratio de Weber est moins élevé lorsque l’intervalle de temps est de 800 ms ou de 1200 ms que lorsqu’il est de 1600 ms ($p < 0,01$). La différence entre l’intervalle de temps de 800 ms et celui de 1200 ms n’est pas significative ($p = 1,0$).

Les résultats de l’ANOVA pour la condition compter oralement avec expérimentateur (voir le Tableau 8 à l’Annexe C) signalent l’absence d’effet principal significatif du groupe expérimental, $F(1, 43) = 0,280, p = 0,599, \eta^2_p = 0,006$. L’effet principal de l’intervalle de temps est significatif, $F(1,745, 75,044) = 31,169, p < 0,001, \eta^2_p = 0,420$, tandis que l’effet d’interaction entre l’intervalle de temps et le groupe expérimental ne l’est pas, $F(1,745, 75,044) = 2,009, p = 0,147, \eta^2_p = 0,045$. Dans le but de situer plus précisément les différences significatives parmi les trois intervalles de temps, des contrastes a posteriori sont réalisés avec une correction de Bonferroni. Les résultats retrouvés au Tableau 9 de l’Annexe C signalent un ratio de Weber moins élevé lorsque l’intervalle de temps est de 800 ms ou de 1200 ms que lorsqu’il est de 1600 ms ($p < 0,001$). La différence entre l’intervalle de temps de 800 ms et celui de 1200 ms n’est pas significative ($p = 1,0$).

Erreur relative

Une analyse de variance (ANOVA) à plan factoriel 2 (groupes) × 3 (conditions expérimentales) × 3 (intervalles de temps) avec mesures répétées sur les deux derniers facteurs est réalisée sur l’erreur relative dans le but de vérifier s’il y a une surestimation ou une sous-estimation significative de la durée cible à produire en fonction du groupe, des conditions expérimentales et desintervalles temporels utilisés lors du comptage. Le test de Mauchly effectué indique une violation du postulat de sphéricité pour l’effet principal de l’intervalle ainsi que pour l’effet d’interaction entre la condition et l’intervalle de temps. Une correction Greenhouse-Geisser est donc appliquée pour ces analyses.
Les résultats de l’ANOVA présentés dans le Tableau 10 (voir Annexe D) et illustrés par la Figure 2 (voir Annexe H), indiquent une absence d’effet principal significatif du groupe expérimental, $F(1, 43) = 0,000$, $p = 0,999$, $\eta^2_p = 0,000$. L’effet principal de la condition est significatif, $F(2, 86) = 4,151$, $p < 0,05$, $\eta^2_p = 0,088$, mais l’effet d’interaction entre le groupe expérimental et la condition ne l’est pas, $F(2, 86) = 1,093$, $p = 0,340$, $\eta^2_p = 0,025$.

L’effet principal de l’intervalle de temps est significatif, $F(1,209, 51,966) = 6,442$, $p < 0,05$, $\eta^2_p = 0,130$, mais l’effet d’interaction entre l’intervalle de temps et le groupe expérimental ne l’est pas, $F(1,209, 51,966) = 1,957$, $p = 0,166$, $\eta^2_p = 0,044$. L’effet d’interaction entre la condition et l’intervalle de temps n’est pas significatif, $F(2,750, 118,237) = 0,254$, $p = 0,842$, $\eta^2_p = 0,006$. Similairement, l’effet d’interaction entre la condition, l’intervalle de temps et le groupe expérimental n’est pas significatif, $F(2,750, 118,237) = 0,963$, $p = 0,407$, $\eta^2_p = 0,022$.

Afin de déterminer quels intervalles temps (800 ms, 1200 ms et 1600 ms) diffèrent les uns des autres, des contrastes a posteriori sont réalisés avec une correction de Bonferroni. Les résultats présentés dans le Tableau 11 de l’Annexe D montrent que l’erreur relative est significativement moins élevée lorsque l’intervalle de temps est de 800 ms comparativement à un intervalle de temps de 1600 ms ($p < 0,05$). En outre, l’erreur relative est moins élevée lors des intervalles de temps de 1200 ms par rapport à ceux de 1600 ms ($p < 0,05$). Finalement, les résultats soulignent aussi l’absence de différence significative sur l’erreur relative entre l’intervalle de temps de 800 ms et celui de 1200 ms ($p = 0,532$).

Dans l’optique de situer plus précisément les différences significatives entre les trois conditions (A, B et C), des contrastes a posteriori sont effectués avec une correction de Bonferroni. Les résultats présentés dans le Tableau 12 (voir Annexe D) indiquent que l’erreur relative est significativement moins élevée lors de la condition A (compter silencieusement) comparativement à la condition C (compter oralement en présence d’un auxiliaire de recherche) ($p < 0,05$). À l’inverse, les résultats soulignent l’absence de différence
significative sur l’erreur relative entre la condition A et la condition B (compter oralement)
\(p = 1,0\), ainsi qu’entre la condition B et C \(p = 0,161\).

Anxiété situationnelle

En dernier lieu, une analyse de variance (ANOVA) à plan factoriel 2 (groupes) x 3
(conditions expérimentales) avec mesures répétées est effectuée sur le score obtenu lors de
la passation du « Questionnaire d’évaluation personnelle » (voir Annexe B) afin de
déterminer s’il y existe une différence significative entre les conditions et les groupes quant
au niveau d’anxiété situationnelle ressentie par les participants. Le facteur des conditions
expérimentales est à mesure répétée, tandis que le facteur du groupe est non répété. Le test
de Mauchly réalisé ne souligne aucune violation quant au postulat de sphéricité.

Les résultats de l’ANOVA présentés dans le Tableau 13 (voir Annexe E) indiquent
une absence d’effet principal significatif de la condition, \(F(2, 86) = 1,079, \ p = 0,344\),
\(\eta^2_p = 0,024\), tandis que l’effet principal du groupe expérimental est significatif,
\(F(1, 43) = 6,665, \ p < 0,05, \eta^2_p = 0,134\). L’effet d’interaction entre la condition et le groupe
expérimental n’est pas significatif, \(F(2, 86) = 1,339, \ p = 0,252, \eta^2_p = 0,032\). Ainsi, le niveau
d’anxiété situationnelle ressentie par les participants ne diffère pas significativement entre
les trois conditions à l’étude. En somme, le groupe d’adultes bègues présente en moyenne un
niveau d’anxiété situationnelle significativement plus élevé comparativement au groupe
d’adultes non bègues (voir la Figure 3 à l’Annexe I). Plus précisément, le score moyen
d’anxiété situationnelle pour les trois conditions est de 32,68 \(ET = 8,27\) pour les adultes
bègues contre 27,75 \(ET = 4,12\) pour les adultes non bègues.
Chapitre 4 : Discussion
L’objectif principal de la présente étude était d’évaluer le possible lien entre le trouble de la parole du bégaiement et la capacité à percevoir et à maintenir un rythme régulier, et ce, en comparant un groupe d’adultes bègues à un groupe d’adultes non bègues lors d’activités de comptage explicite. Le deuxième objectif consistait à comparer les performances temporelles du groupe d’adultes bègues entre les conditions avec composante verbale (à voix haute), par opposition à la condition où le comptage est interne (silencieux). Le troisième objectif visait à mesurer l’influence de l’anxiété situationnelle lors de l’exécution des tâches expérimentales en comparant les trois conditions à l’étude (compter en silence, compter à voix haute, et compter à voix haute en présence d’un expérimentateur chargé de l’enregistrement vocal). Finalement, le dernier objectif était de confirmer ou infirmer le constat observé précédemment par Grondin et al. (2015), à l’effet que la variabilité temporelle, mesurée par le ratio de Weber, devrait être plus élevée lors des conditions expérimentales qui utilisent les intervalles de temps longs (1600 ms) comparativement aux conditions avec les intervalles de temps courts (800 et 1200 ms).

Ratio de Weber

Premièrement, les résultats obtenus indiquent une absence d’effet principal significatif du groupe expérimental (adultes bègues versus adultes non bègues) sur le ratio de Weber. Malgré la présence de différences notables, illustrées par la *Figure 1* (voir Annexe G), entre les moyennes des deux groupes sur le plan de la variabilité temporelle, l’hypothèse de départ affirmant que les performances temporelles du groupe composé d’adultes bègues seraient significativement plus variables que celles du groupe d’adultes non bègues est infirmée. En d’autres termes, la variabilité temporelle moyenne obtenue par les adultes bègues n’est pas significativement supérieure à celle des adultes non bègues. Néanmoins, la triple interaction (Condition × Intervalle × Groupe) et la double interaction (Condition × Groupe) significatives signalent la présence d’un effet de groupe toutefois modulé par les deux autres facteurs de l’étude. Tout en y apportant des nuances, la direction de cette relation peut concorder avec la littérature scientifique en détectant une variabilité temporelle moyenne significativement supérieure chez le groupe d’adultes bègues comparativement à
celui d’adultes non bègues lors d’au moins une condition et un intervalle de temps (silence et 1600 ms).

De façon sommaire, les différences ne sont pas aussi marquées que celles obtenues par d’autres chercheurs s’intéressant à ce possible lien entre le traitement rythmique, ou temporel, et le trouble de la parole du bégaïement (Cooper & Allen, 1977; Falk et al., 2015). Ceci laisse croire que le déficit du traitement temporel chez les personnes bègues n’est peut-être pas aussi prononcé que ce que la littérature scientifique dresse comme portrait. Les divergences méthodologiques parmi les multiples protocoles, surtout quant aux tâches expérimentales, rendent difficiles les comparaisons directes entre les études sur le sujet.

Deuxièmement, les résultats obtenus par les contrastes a posteriori réalisés entre les trois conditions expérimentales sur la variabilité temporelle sont en opposition avec la littérature scientifique affirmant que les performances temporelles des adultes bègues seraient plus variables, ou plus irrégulières rythmiquement, lors des conditions avec composante verbale par rapport aux conditions silencieuses, c’est-à-dire lorsque la tâche expérimentale se réalise en comptant de façon interne (sans son émis vocalement). En effet, la variabilité temporelle est significativement inférieure lors des deux conditions incluant une dimension verbale (compter oralement avec ou sans expérimentateur) que dans la condition où le comptage est interne (silencieusement). Les adultes bègues de cette étude semblaient donc profiter de l’activation comportementale occasionnée par l’action de parler à voix haute. Ceci suggère que le déficit temporel provoqué par la composante verbale de la tâche expérimentale serait moins important que les bénéfices apportés par l’utilisation des capacités cognitives reliées à la production de la parole nécessaire au dénombrement rythmique. L’attention supplémentaire dirigée vers la tâche à réaliser entraînerait cette baisse de la variabilité temporelle (Brown, 1985; Brown & West, 1990; Grondin & Macar, 1992; Zakay & Block, 1996).

Sous ce rapport, le modèle de Zakay et Block identifie la porte attentionnelle comme étant « un mécanisme cognitif contrôlé par l’allocation de l’attention portée au temps » [traduction libre] (Zakay & Block, 1995, p.175). Lorsque plus d’attention est portée au temps,
la porte attentionnelle laisse passer davantage d’impulsions émises par le pacemaker de l’horloge interne vers l’accumulateur afin de favoriser de meilleurs jugements temporels. À l’opposé, une réduction de la quantité d’informations temporelles emmagasinées en mémoire peut créer des représentations mentales pauvres ou erronées de la durée cible à juger et occasionner des performances temporelles moins bonnes. Durant les séances de la condition compter silencieusement, certains sujets ont peut-être involontairement affecté une plus grande part de leurs ressources attentionnelles pour des tâches non temporelles (ex. : pensées intrusives, tracas personnel, esprit vagabond, etc.), laissant moins de ressources pour les jugements temporels et la mémorisation des durées. Essentiellement, la baisse du niveau attentionnel, ou de la concentration, vers les activités de comptage silencieux explicite semble générer des performances temporelles plus irrégulières.

Enfin, les résultats obtenus quant à la variabilité temporelle mesurée selon les trois intervalles de temps reproduisent l’effet noté par Grondin et al. (2015). Plus précisément, les variabilités temporelles les plus élevées, mesurées par des ratios de Weber élevés, sont obtenues avec les intervalles de temps de 1600 ms. Inversement, les variabilités temporelles les plus basses sont observées avec les dénombrements rythmiques utilisant les intervalles de temps de 800 ms ou de 1200 ms. Aucune différence statistiquement significative n’a été soulignée entre les séances employant les intervalles de temps de 800 ms et celles avec les intervalles de 1200 ms. Ces observations supportent l’idée avancée par Grondin et al. (2015) postulant que ce manque de régularité rythmique pourrait être occasionné par une limitation temporelle au sein de la mémoire à court terme.

Par ailleurs, la théorie du temps scalaire ne cadre pas adéquatement avec les mesures du ratio de Weber recueillies lors de la tâche rythmique avec les intervalles temporels longs (1600 ms). En effet, la variabilité temporelle reste relativement stable lors des séquences avec les intervalles de temps courts (800 ms et 1200 ms), puis augmente de façon significative, peu importe la condition, lors des intervalles de 1600 ms. À cet égard, Macar et Vidal (2009) postulent que seuls de nouveaux modèles de traitement temporel, modernisant la notion de l’accumulateur au sein de l’horloge interne à l’aide des dernières avancées en neuroscience, pourront rendre compte ou traduire adéquatement l’influence, à différents niveaux, des
processus cognitifs de l’attention et de l’activation comportementale sur le jugement temporel effectué lors de telles tâches expérimentales. En se référant aux résultats obtenus dans le cadre de la présente étude, ce type de modèle imaginé devra être assez souple pour être en mesure de pallier les fluctuations possibles quant aux intervalles de temps à juger (courts versus longs), et aux variations provoquées par le comportement cognitif de l’individu (attention soutenue ou différée, activation physique de parler ou non, etc.).

Sur ce point, Grondin (2014) propose de mettre de côté l’idée que le traitement de l’information temporelle se réalise à l’aide d’un seul mécanisme central et d’entrevoir la possibilité de l’existence de deux ou plusieurs dispositifs de traitement œuvrant simultanément. Ce type de modèle, offrant plus de flexibilité, serait davantage en mesure de réaliser les multiples ajustements temporels nécessaires pour répondre aux changements qui s’effectuent rapidement et constamment dans l’environnement de l’individu. Par exemple, un dispositif de traitement pourrait être spécialisé pour les intervalles temporels courts, tandis qu’un second serait affecté au traitement des intervalles longs.

En ajout au protocole de Grondin et al. (2015), les trois conditions expérimentales à l’étude apportent un regard nouveau sur l’interprétation de la variabilité temporelle à travers les différents intervalles de temps. Ainsi, il est possible de constater que l’action de compter à voix haute aide généralement les participants à produire des séquences temporelles plus régulières relativement aux durées cibles établies. Les variabilités temporelles les moins élevées chez les adultes bègues sont obtenues lors des conditions B ou C (dénombrement à l’oral avec ou sans présence d’une personne chargée de l’enregistrement) utilisant les intervalles de temps de 800 ms ou de 1200 ms. À l’opposé, leurs variabilités temporelles les plus élevées sont notées lors de la condition A (compter silencieusement) avec les intervalles de temps de 1600 ms. Chez les adultes non bègues, leurs productions rythmiques caractérisées par la variabilité temporelle la plus élevée se situaient plutôt lors de la condition C avec les intervalles de temps de 1600 ms.
En somme, l’usage d’intervalles de temps de 1600 ms représente le facteur entraînant le plus de variabilité temporelle au sein des différentes activités de comptage explicite réalisées par les participants. À sa façon, la condition expérimentale liée au type de comptage influence la régularité des performances temporelles relativement à l’intervalle de temps et au groupe. Lorsque le dénombrement rythmique s’effectue silencieusement, les adultes bègues semblent plus désavantagés que les adultes non bègues. En revanche, les conditions où le comptage se fait à voix haute aident les adultes bègues à être plus réguliers au niveau du rythme dans leurs productions temporelles. Le support attentionnel offert par l’aspect verbal des conditions avec comptage à voix haute semble moins apparent du côté des adultes non bègues. Du moins, l’apport de ce dernier demeure plus variable en fonction de l’intervalle de temps en vigueur et de la présence ou non d’un expérimentateur.

L’obtention de la variabilité temporelle maximale chez les adultes non bègues à la condition C pour les intervalles de temps de 1600 ms, et non pour ceux de 800 ms et de 1200 ms, soulève également une interrogation face à l’impact possible de cette condition sur les activités de comptage explicite. Le léger stress induit par la présence d’un expérimentateur chargé d’enregistrer le dénombrement rythmique oral, même s’il n’est pas détecté par la mesure du « Questionnaire d’évaluation personnelle », semble nuire uniquement aux adultes non bègues, et ce, exclusivement lors de l’emploi des intervalles de temps de 1600 ms. Ce même constat n’est pas identifié avec les intervalles de 800 ms et de 1200 ms, ni chez les adultes bègues qui, à l’inverse, semblent bénéficier de la présence de la personne chargée d’enregistrer ainsi que de l’aspect oral de la tâche, sans égard aux intervalles temporels en vigueur pour la séance de comptage explicite.

En définitive, la présence de deux interactions significatives impliquant le facteur Groupe (Condition × Intervalle × Groupe et Condition × Groupe) est compatible avec l’idée qu’il existe un déficit du traitement temporel chez les adultes bègues. Des variabilités temporelles moyennes significativement plus élevées sont notées chez ce groupe lors des séances où le comptage se réalise silencieusement et avec des intervalles longs (1600 ms). Ainsi, il est probable que ce déficit sur le plan temporel soit atténué lors des conditions offrant un support moteur (ex. : compter à voix haute), et moins perceptible avec les rythmes
structurés selon des intervalles temporels courts (800 ms et 1200 ms). Les résultats de cette recherche portent à croire que cette possible limite de traitement de l’information temporelle chez les adultes bègues se détecte plus facilement en fonction des modalités de la tâche expérimentale ainsi que des intervalles temporels utilisés par cette dernière.

Erreur relative

Au niveau de la variable dépendante de l’erreur relative, aucun effet principal significatif du groupe expérimental n’est détecté. Les résultats obtenus lors de cette étude diffèrent quelque peu de ceux rapportés par Grondin et al. (2015). En effet, l’erreur relative moyenne reste positive, peu importe l’intervalle de temps utilisé (800, 1200 ou 1600 ms). Les participants produisaient en moyenne des séquences rythmiques plus longues que la durée théorique cible établie, ce qui n’était pas le cas dans les expériences de Grondin et al. (2015). Dans la présente étude, le décalage temporel atteignait son maximum lors des séances utilisant les intervalles de temps de 1600 ms, et était significativement moins important avec l’emploi des intervalles de 800 ms ou de 1200 ms. Une plus grande distance par rapport à la cible était aussi observée à 1600 ms qu’à 800 ms dans l’expérience 2 de Grondin et al. (2015), mais pas dans leur expérience 1.

La condition expérimentale caractérisée par le comptage explicite à l’oral avec la présence d’un assistant de recherche chargé de l’enregistrement vocal représente celle occasionnant la production des séquences temporelles les plus longues comparativement aux durées cibles établies, et ce, chez les deux groupes. Inversement, les séquences rythmiques les plus courtes, et/ou se situant plus près de la durée théorique cible, sont générées lors de la condition silencieuse, condition qui était utilisée par les participants de Grondin et al. (2015) qui produisaient en moyenne des intervalles plus courts que les cibles visées. Bref, la présence de l’auxiliaire de recherche pendant la condition C semble favoriser, chez tous les participants, des productions rythmiques plus longues par rapport à la durée cible. Ce décalage temporel devient encore plus important lors des séquences rythmiques dotées d’intervalles temporels longs (1600 ms). Ces résultats donnent à croire que l’anxiété situationnelle, même si l’effet potentiel de celle-ci ne se manifestait pas objectivement par
des variations statistiques entre les conditions expérimentales, semble avoir eu un impact sur les performances temporelles des participants.

Anxiété situationnelle

L’absence de différences statistiquement significatives entre les trois conditions expérimentales (A, B et C) sur le score d’anxiété situationnelle mesurée par le « Questionnaire d’évaluation personnelle » indique que l’anxiété ressentie reste sensiblement la même chez les participants, peu importe la condition. Ces résultats, illustrés par la Figure 3 (voir Annexe I), sont à l’encontre de l’hypothèse postulée a priori qui soutenait l’idée que l’anxiété situationnelle serait augmentée lors de la condition orale incluant la présence de l’expérimentateur chargé de l’enregistrement. En effet, le plus haut niveau moyen d’anxiété ressentie chez les adultes bègues se situe plutôt à la condition comportant un dénombrement à voix haute sans enregistrement, et où ceux-ci exécutent la tâche seuls. Ceci laisse possiblement croire que le protocole expérimental administré n’est pas suffisamment stressant, ou anxiogène, pour créer chez les participants un sentiment ou un état d’anxiété détectable par la mesure du « Questionnaire d’évaluation personnelle ».

Toutefois, l’analyse de variance effectuée sur l’anxiété situationnelle ressentie a permis de signaler un effet principal du groupe expérimental. En accord avec la littérature scientifique (Craig, 2014; Craig & Tran, 2014), les adultes bègues ont obtenu en moyenne des scores d’anxiété situationnelle plus élevés que les adultes non bègues de cet échantillon, peu importe la condition. Quoiqu’obtenu à l’aide d’une mesure sommaire autorapportée, ce constat sur l’anxiété des personnes bègues, également souligné par Craig (2014), accentue l’importance d’approfondir l’analyse de cette problématique et de sensibiliser les professionnels de santé en contact avec cette clientèle.
Limites, recherches futures et implications

Ce projet de recherche comporte certaines limites qui peuvent expliquer les divergences obtenues avec la littérature scientifique quant à l’absence de différence significative entre le groupe d’adultes bègues et le groupe d’adultes non bègues au niveau de la variabilité temporelle. Les limites présentées ci-dessous apportent certaines nuances à considérer quant aux retombées des résultats de cette étude.

Tout d’abord, l’échantillon de taille passablement petite peut soulever des questions quant à la représentativité de la population bègue au sein du groupe expérimental. Ainsi, la réplication de ce protocole avec un groupe d’adultes bègues plus nombreux dresserait un portrait encore plus précis de leurs habiletés temporelles et pourrait peut-être engendrer l’obtention de résultats divergents au niveau de la variabilité temporelle moyenne du groupe. De plus, aucun contrôle expérimental n’a été effectué quant aux aptitudes musicales ou à la pratique d’un instrument de musique parmi les sujets de l’étude. Certains participants, tant du côté du groupe d’adultes bègues que celui composé d’adultes non bègues, ont rapporté être musiciens et/ou pratiquer d’un instrument de musique pour le plaisir dans leur temps libre. Il est connu que l’entraînement musical permet d’améliorer les performances temporelles (Grondin, 2018; Grondin & Killeen, 2009). À ce propos, Grondin et Killeen (2009) affirment que la pratique d’un instrument de musique contribue grandement à diminuer la variabilité temporelle lors de tâches nécessitant le maintien d’un rythme régulier. Un entraînement musical prolongé pourrait même engendrer une réduction de plus de 50 % du coefficient de variation des productions, soit de la variabilité temporelle. La pratique fréquente d’un instrument musical sous-tend donc nécessairement un entraînement au maintien d’un rythme régulier soutenu et modulé par le nombre d’heures investies dans cette activité. Le contrôle de cette variable confondante assurerait que les résultats obtenus ne sont pas influencés par la pratique musicale.

Dans la même optique, un meilleur contrôle aurait pu être réalisé au niveau du délai écoulé entre les trois passations expérimentales chez chaque participant. En effet, l’unique restriction en ce sens était qu’une seule séance pouvait être réalisée par jour. Par conséquent,
certains sujets ont effectué leurs trois séances une journée après l’autre afin d’éviter l’attrition ou le manque de motivation de leur part, tandis que chez d’autres sujets, plusieurs semaines pouvaient s’écouler entre chaque séance en raison d’un manque de disponibilités. Un meilleur contrôle de cette variable nuisible permettrait d’assurer qu’il n’y a aucune influence ou effet d’apprentissage chez les participants par rapport au délai entre leurs trois sessions. Ainsi, si apprentissage il y a au fil des sessions, celui-ci restera sensiblement le même pour chaque participant. Tout bien considéré, un plus grand échantillon de personnes bègues ainsi qu’un meilleur contrôle au niveau des variables confondantes, telles que les habiletés musicales et le niveau de sévérité du bégaiement, permettraient probablement de tirer des conclusions plus définitives.

En guise de pistes de recherches futures, il pourrait être pertinent de tenter de créer un plus grand stress ou, du moins, un environnement un peu plus anxiogène pour les participants afin de décupler l’effet de l’anxiété de la condition C sur les différentes variables à l’étude. Par exemple, l’assistant de recherche chargé d’enregistrer la session du participant pourrait être positionné en face de celui-ci en s’assurant de placer un réel micro directement devant la personne enregistrée. L’utilisation de nombres plus difficiles à prononcer au niveau phonétique pourrait aussi être envisageable (ex. : 101 à 131) afin d’augmenter le « stress articulatoire » sur le dénombrement ou le discours de la personne, et du même coup, intensifier l’anxiété qui s’en découle. En outre, l’évaluation de la sévérité du bégaiement chez les participants bègues à l’aide de tests standardisés valides permettrait de mesurer l’impact de cette variable sur la variabilité temporelle ou l’erreur relative. De cette façon, il serait possible de déterminer si un bégaiement plus sévère entraîne une plus grande variabilité temporelle ou vice-versa.

Malgré les multiples limites mentionnées ci-dessus, la présente recherche comporte certaines implications cliniques et scientifiques. Tout d’abord, les résultats relatifs à l’anxiété situationnelle ressentie lors des séances expérimentales semblent emprunter la même direction que ce qui est de plus en plus souvent rapporté dans la littérature scientifique concernant le lien entre le trouble de la parole du bégaiement et le développement de l’anxiété. L’obtention d’un plus haut niveau d’anxiété chez le groupe d’adultes bègues
souligne l’importance d’approfondir des recherches à ce propos et de sensibiliser les professionnels de la santé (orthophonistes, orthopédiagogues, psychologues, etc.) se retrouvant directement ou indirectement en contact avec cette clientèle spécifique qu’est la communauté bègue.

Du point de vue de la variabilité temporelle, les résultats de cette étude ne permettent pas de confirmer définitivement la présence d’un lien entre un déficit du traitement temporel en général et le trouble de la parole du bégaïement. En revanche, la présence de deux interactions significatives (Condition × Intervalle × Groupe et Condition × Groupe) sur la variabilité temporelle garde cette question ouverte et souffle l’idée de reproduire cette étude avec un plus grand échantillon ainsi qu’avec quelques différences sur le plan méthodologique. Par exemple, le protocole pourrait être remplacé par une tâche expérimentale plus précise qui mesure et analyse simultanément l’intervalle de temps global produit ainsi que l’ensemble des plus petits intervalles de temps intermédiaires réalisés pour y arriver. Ainsi, il serait possible d’obtenir un portrait plus complet des performances rythmiques des personnes bègues et noter, s’il y a lieu, exactement à quel moment la variabilité temporelle augmente ou diminue lors des essais. De cette façon, l’influence de l’attention soutenue serait moins notable ou, du moins, un peu plus contrôlée à travers les mesures.

D’emblée, des recherches supplémentaires se doivent d’être réalisées pour clarifier la question. L’établissement d’un tel lien entre le trouble de la parole du bégaïement et le traitement temporel peut donner place à plusieurs avenues intéressantes quant à la psychologie du temps et du rythme. L’entraînement par le rythme à plus ou moins long terme favorise-t-il le développement d’une meilleure fluidité de la parole, ou mieux, est-ce que l’apprentissage musical en bas âge peut générer des retombées futures positives sur la structure rythmique du discours d’une personne bègue? De multiples interrogations pourront émerger suite à l’approbation scientifique de ce rapprochement effectué entre le trouble de la parole du bégaïement et la présence d’un déficit du traitement temporel chez cette population.
Conclusion générale

Pour conclure, les résultats de cette recherche ne permettent pas d’appuyer directement les fondements d’un lien entre le trouble de la parole du bégaïement et un déficit général du traitement temporel. En fait, la différence de variabilité temporelle entre les groupes d’adultes bègues et d’adultes non bègues dépend de conditions spécifiques. La triple interaction significative (Condition × Intervalle × Groupe) révèle une variabilité temporelle significativement plus élevée chez les adultes bègues exclusivement lors de la condition silencieuse avec les intervalles temporels longs (1600 ms). Ce constat mène à une reconsidération de la gravité ou de l’ampleur de cette atteinte du traitement temporel chez les personnes bègues, décrite dans la littérature scientifique. En effet, un déficit généralisé du traitement temporel entraînerait l’apparition de différences significatives entre les deux groupes par rapport à la variabilité temporelle de leurs productions rythmiques, et ce, sans égard à la condition choisie ou à l’intervalle temporel employé. Ceci n’est pas le cas pour la recherche actuelle où la limitation du traitement temporel chez les adultes bègues est observée uniquement lors d’une combinaison de facteurs (compter silencieusement selon des intervalles de 1600 ms).

En un mot, les conclusions de cette étude soulignent l’impact négatif de la condition silencieuse sur la variabilité temporelle des productions rythmiques réalisées par les participants bègues, atteignant son influence maximale lors de l’utilisation des intervalles de temps de 1600 ms. D’un point de vue plus global, c’est-à-dire chez les deux groupes, le rythme à maintenir basé sur les intervalles de temps de 1600 ms engendre plus de variabilité temporelle que les rythmes composés d’intervalles de 800 ms ou de 1200 ms. Ce résultat général confirme les observations antérieures de Grondin et al. (2015), comme quoi il y a une discontinuité de la propriété scalaire pour le temps entre 1200 ms et 1600 ms.
Références

Annexe A
Questionnaire sociodémographique

SD1. Sexe
 00. Homme…………....
 01. Femme…………….

SD2. Quel âge avez-vous?

SD3. Quel est votre état civil actuel?
 00. Marié(e) ..
 01. Conjoint de fait ..
 02. Séparé(e) ..
 03. Divorcé(e) ..
 04. Veuf(ve) ..
 05. Célibataire ..
 99. Refuse de répondre ..

SD4. Quel est le dernier niveau de scolarité que vous avez complété?
 00. Secondaire complété ..
 01. Collégial complété ..
 02. Premier cycle universitaire complété
 03. Deuxième cycle universitaire complété
 04. Troisième cycle universitaire complété
 99. Refuse de répondre ...

SD5. Quelle est votre occupation principale?
 01. Emploi rémunéré à temps plein
 02. Emploi rémunéré à temps partiel
 03. Emploi saisonnier ...
 04. Aux études ..
 05. Ni aux études, ni en emploi ..
 99. Refuse de répondre ...

SD6. Consultez-vous présentement un(e) orthophoniste?
 00. Oui ...
 01. Non ...
 99. Refuse de répondre ...

SD7. Avez-vous déjà eu recours à des services en orthophonie?
 00. Oui ...
 01. Non ...
 99. Refuse de répondre ...
SD8. Comment qualifirez-vous votre bégaiement?
00. Léger □
01. Modéré □
00. Sévère □
03. Ne s’applique pas □

SD9. Avez-vous déjà été évalué par votre orthophoniste selon les tests standardisés SSI-3 ou SSI-4 (Stuttering Severity Instrument)? Ce sont des tests mesurant le pourcentage de syllabes bégayées.
00. Oui.. □
01. Non .. □
99. Refuse de répondre □

SD10. Si vous avez répondu oui à la question précédente et que vous connaissez votre résultat, seriez-vous à l’aise de fournir ce dernier? Si oui, veuillez l’inscrire ici-bas.

Annexe B

QUESTIONNAIRE D'ÉVALUATION PERSONNELLE IASTA (Forme Y-1)
Traduit et adapté par Janel Gauthier et Stéphane Bouchard, Université Laval (1993)

CONSIGNES : Vous trouverez ci-dessous un certain nombre d'énoncés que les gens ont déjà utilisés pour se décrire. Lisez chaque énoncé, puis en encerclant le chiffre approprié à droite de l'énoncé, indiquez comment vous vous sentez maintenant, c'est-à-dire à ce moment précis. Il n'y a pas de bonnes ou de mauvaises réponses. Ne vous attardez pas trop longtemps sur un énoncé ou l'autre, mais donnez la réponse qui vous semble décrire le mieux les sentiments que vous éprouvez présentement.

Échelle :
(1) = Pas du tout
(2) = Un peu
(3) = Modérément
(4) = Beaucoup

<table>
<thead>
<tr>
<th>Énoncé</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>01. Je me sens calme</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02. Je me sens en sécurité</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03. Je suis tendu(e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04. Je me sens surmené(e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05. Je me sens tranquille</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06. Je me sens bouleversé(e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07. Je suis préoccupé(e) actuellement par des malheurs possibles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08. Je me sens comblé(e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09. Je me sens effrayé(e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Je me sens à l'aise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Je me sens sûr(e) de moi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Je me sens nerveux(se)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Je suis affolé(e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Je me sens indécis(e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Je suis détendu(e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Je me sens satisfait(e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Je suis préoccupé(e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Je me sens tout mêlé(e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Je sens que j'ai les nerfs solides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Je me sens bien</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annexe C

Tableau 1

Analyse de variance associée aux effets du groupe, de la condition et de l’intervalle de temps sur le ratio de Weber (N = 45).

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>F</th>
<th>p</th>
<th>η²_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-sujets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groupe</td>
<td>1</td>
<td>2,751</td>
<td>0,104</td>
<td>0,060</td>
</tr>
<tr>
<td>Erreur</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intra-sujets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>1,407</td>
<td>12,217</td>
<td>0,000*</td>
<td>0,221</td>
</tr>
<tr>
<td>Condition x Groupe</td>
<td>1,407</td>
<td>5,282</td>
<td>0,015*</td>
<td>0,109</td>
</tr>
<tr>
<td>Erreur (Condition)</td>
<td>60,510</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervalle</td>
<td>1,427</td>
<td>38,712</td>
<td>0,000*</td>
<td>0,474</td>
</tr>
<tr>
<td>Intervalle x Groupe</td>
<td>1,427</td>
<td>0,240</td>
<td>0,711</td>
<td>0,006</td>
</tr>
<tr>
<td>Erreur (Intervalle)</td>
<td>61,354</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition x Intervalle</td>
<td>2,416</td>
<td>1,260</td>
<td>0,291</td>
<td>0,028</td>
</tr>
<tr>
<td>Condition x Intervalle x Groupe</td>
<td>2,416</td>
<td>3,197</td>
<td>0,036*</td>
<td>0,069</td>
</tr>
<tr>
<td>Erreur (Condition x Intervalle)</td>
<td>103,882</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparaison de Bonferroni entre les trois intervalles de temps sur le ratio de Weber (N = 45).

<table>
<thead>
<tr>
<th>Comparaisons</th>
<th>Différence de moyennes</th>
<th>Erreur standard</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 ms vs 1200 ms</td>
<td>-0,004</td>
<td>0,002</td>
<td>0,197</td>
</tr>
<tr>
<td>800 ms vs 1600 ms</td>
<td>-0,028</td>
<td>0,004</td>
<td>0,000*</td>
</tr>
<tr>
<td>1200 ms vs 1600 ms</td>
<td>-0,024</td>
<td>0,004</td>
<td>0,000*</td>
</tr>
</tbody>
</table>

Comparaison de Bonferroni entre les trois conditions expérimentales sur le ratio de Weber (N = 45).

<table>
<thead>
<tr>
<th>Comparaisons</th>
<th>Différence de moyennes</th>
<th>Erreur standard</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition A vs B</td>
<td>0,018</td>
<td>0,005</td>
<td>0,002*</td>
</tr>
<tr>
<td>Condition A vs C</td>
<td>0,019</td>
<td>0,005</td>
<td>0,001*</td>
</tr>
<tr>
<td>Condition B vs C</td>
<td>0,002</td>
<td>0,003</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Rappel :
- Condition A = Compter silencieusement
- Condition B = Compter oralement
- Condition C = Compter oralement avec expérimentateur et enregistrement
Tableau 4

Analyse de variance associée aux effets du groupe et de l’intervalle de temps sur le ratio de Weber lors de la condition A (N = 45).

<table>
<thead>
<tr>
<th>Source</th>
<th>dl</th>
<th>F</th>
<th>p</th>
<th>η^2_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-sujets Groupe</td>
<td>1</td>
<td>4,895</td>
<td>0,032*</td>
<td>0,102</td>
</tr>
<tr>
<td>Erreur</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intra-sujets Intervalle</td>
<td>1,327</td>
<td>12,782</td>
<td>0,000*</td>
<td>0,229</td>
</tr>
<tr>
<td>Intervalle x Groupe</td>
<td>1,327</td>
<td>2,486</td>
<td>0,111</td>
<td>0,055</td>
</tr>
<tr>
<td>Erreur (Intervalle)</td>
<td>57,062</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Condition A = compter silencieusement.

Tableau 5

Comparaison de Bonferroni entre les trois intervalles de temps sur le ratio de Weber lors de la condition A (N = 45).

<table>
<thead>
<tr>
<th>Comparaisons</th>
<th>Différence de moyennes</th>
<th>Erreur standard</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 ms vs 1200 ms</td>
<td>-0,008</td>
<td>0,004</td>
<td>0,097</td>
</tr>
<tr>
<td>800 ms vs 1600 ms</td>
<td>-0,034</td>
<td>0,008</td>
<td>0,000*</td>
</tr>
<tr>
<td>1200 ms vs 1600 ms</td>
<td>-0,025</td>
<td>0,008</td>
<td>0,011*</td>
</tr>
</tbody>
</table>

Note. Condition A = compter silencieusement.
Tableau 6

Analyse de variance associée aux effets du groupe et de l’intervalle de temps sur le ratio de Weber lors de la condition B (N = 45).

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>F</th>
<th>p</th>
<th>η^2_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-sujets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groupe</td>
<td>1</td>
<td>1,926</td>
<td>0,172</td>
<td>0,043</td>
</tr>
<tr>
<td>Erreur</td>
<td></td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intra-sujets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervalle</td>
<td>1,586</td>
<td>12,598</td>
<td>0,000*</td>
<td>0,227</td>
</tr>
<tr>
<td>Intervalle x Groupe</td>
<td>1,586</td>
<td>0,669</td>
<td>0,482</td>
<td>0,015</td>
</tr>
<tr>
<td>Erreur (Intervalle)</td>
<td></td>
<td>68,215</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Condition B = compter oralement.

Tableau 7

Comparaison de Bonferroni entre les trois intervalles de temps sur le ratio de Weber lors de la condition B (N = 45).

<table>
<thead>
<tr>
<th>Comparaisons</th>
<th>Différence de moyennes</th>
<th>Erreur standard</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 ms vs 1200 ms</td>
<td>-0,002</td>
<td>0,004</td>
<td>1,000</td>
</tr>
<tr>
<td>800 ms vs 1600 ms</td>
<td>-0,020</td>
<td>0,005</td>
<td>0,002*</td>
</tr>
<tr>
<td>1200 ms vs 1600 ms</td>
<td>-0,018</td>
<td>0,003</td>
<td>0,000*</td>
</tr>
</tbody>
</table>

Note. Condition B = compter oralement.
Tableau 8

Analyse de variance associée aux effets du groupe et de l’intervalle de temps sur le ratio de Weber lors de la condition C (N = 45).

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>F</th>
<th>p</th>
<th>η^2_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-sujets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groupe</td>
<td>1</td>
<td>0,280</td>
<td>0,599</td>
<td>0,006</td>
</tr>
<tr>
<td>Erreur</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intra-sujets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervalle</td>
<td>1,745</td>
<td>31,169</td>
<td>0,000*</td>
<td>0,420</td>
</tr>
<tr>
<td>Intervalle x Groupe</td>
<td>1,745</td>
<td>2,009</td>
<td>0,147</td>
<td>0,045</td>
</tr>
<tr>
<td>Erreur (Intervalle)</td>
<td>75,044</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Condition C = compter oralement avec expérimentateur et enregistrement.

Tableau 9

Comparaison de Bonferroni entre les trois intervalles de temps sur le ratio de Weber lors de la condition C (N = 45).

<table>
<thead>
<tr>
<th>Comparaisons</th>
<th>Différence de moyennes</th>
<th>Erreur standard</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 ms vs 1200 ms</td>
<td>-0,002</td>
<td>0,003</td>
<td>1,000</td>
</tr>
<tr>
<td>800 ms vs 1600 ms</td>
<td>-0,029</td>
<td>0,005</td>
<td>0,000*</td>
</tr>
<tr>
<td>1200 ms vs 1600 ms</td>
<td>-0,028</td>
<td>0,004</td>
<td>0,000*</td>
</tr>
</tbody>
</table>

Note. Condition C = compter oralement avec expérimentateur et enregistrement.
Annexe D

Tableau 10

Analyse de variance associée aux effets du groupe, de la condition et de l’intervalle de temps sur l’erreur relative (N = 45).

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>F</th>
<th>p</th>
<th>η²p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-sujets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groupe</td>
<td>1</td>
<td>0,000</td>
<td>0,999</td>
<td>0,000</td>
</tr>
<tr>
<td>Erreur</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intra-sujets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>2</td>
<td>4,151</td>
<td>0,019*</td>
<td>0,088</td>
</tr>
<tr>
<td>Condition x Groupe</td>
<td>2</td>
<td>1,093</td>
<td>0,340</td>
<td>0,025</td>
</tr>
<tr>
<td>Erreur (Condition)</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervalle</td>
<td>1,209</td>
<td>6,442</td>
<td>0,010*</td>
<td>0,130</td>
</tr>
<tr>
<td>Intervalle x Groupe</td>
<td>1,209</td>
<td>1,957</td>
<td>0,166</td>
<td>0,044</td>
</tr>
<tr>
<td>Erreur (Intervalle)</td>
<td>51,966</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition x Intervalle</td>
<td>2,750</td>
<td>0,254</td>
<td>0,842</td>
<td>0,006</td>
</tr>
<tr>
<td>Condition x Intervalle x Groupe</td>
<td>2,750</td>
<td>0,963</td>
<td>0,407</td>
<td>0,022</td>
</tr>
<tr>
<td>Erreur (Condition x Intervalle)</td>
<td>118,237</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tableau 11

Comparaison de Bonferroni entre les trois intervalles de temps sur l’erreur relative (N = 45).

<table>
<thead>
<tr>
<th>Comparaisons</th>
<th>Différence de moyennes</th>
<th>Erreur standard</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 ms vs 1200 ms</td>
<td>-0,009</td>
<td>0,007</td>
<td>0,532</td>
</tr>
<tr>
<td>800 ms vs 1600 ms</td>
<td>-0,042</td>
<td>0,016</td>
<td>0,036*</td>
</tr>
<tr>
<td>1200 ms vs 1600 ms</td>
<td>-0,033</td>
<td>0,012</td>
<td>0,034*</td>
</tr>
</tbody>
</table>

Tableau 12

Comparaison de Bonferroni entre les trois conditions expérimentales sur l’erreur relative (N = 45).

<table>
<thead>
<tr>
<th>Comparaisons</th>
<th>Différence de moyennes</th>
<th>Erreur standard</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition A vs B</td>
<td>-0,009</td>
<td>0,014</td>
<td>1,000</td>
</tr>
<tr>
<td>Condition A vs C</td>
<td>-0,038</td>
<td>0,012</td>
<td>0,012*</td>
</tr>
<tr>
<td>Condition B vs C</td>
<td>-0,029</td>
<td>0,015</td>
<td>0,161</td>
</tr>
</tbody>
</table>

Rappel :
- Condition A = Compter silencieusement
- Condition B = Compter oralement
- Condition C = Compter oralement avec expérimentateur et enregistrement
Annexe E

Tableau 13

Analyse de variance associée aux effets du groupe et de la condition sur l’anxiété ressentie (N = 45).

<table>
<thead>
<tr>
<th>Source</th>
<th>dl</th>
<th>F</th>
<th>p</th>
<th>η^2_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-sujets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groupe</td>
<td>1</td>
<td>6,665</td>
<td>0,013*</td>
<td>0,134</td>
</tr>
<tr>
<td>Erreur</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intra-sujets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>2</td>
<td>1,079</td>
<td>0,344</td>
<td>0,024</td>
</tr>
<tr>
<td>Condition x Groupe</td>
<td>2</td>
<td>1,339</td>
<td>0,252</td>
<td>0,032</td>
</tr>
<tr>
<td>Erreur (Condition)</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annexe F

Tableau 14

Tableau croisé entre le sexe et le groupe expérimental (N = 45).

<table>
<thead>
<tr>
<th>Groupe</th>
<th>Sexe</th>
<th>H</th>
<th>F</th>
<th>(\chi^2)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bègue</td>
<td></td>
<td>15</td>
<td>6</td>
<td>1,420</td>
<td>0,356</td>
</tr>
<tr>
<td>Non bègue</td>
<td></td>
<td>13</td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 15

Âge en fonction du groupe expérimental (N = 40).

<table>
<thead>
<tr>
<th>Groupe</th>
<th>Moyenne</th>
<th>Min.</th>
<th>Max.</th>
<th>(ET)</th>
<th>(dl)</th>
<th>(t)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bègue</td>
<td>26,00</td>
<td>20</td>
<td>38</td>
<td>4,325</td>
<td>38</td>
<td>-0,153</td>
<td>0,879</td>
</tr>
<tr>
<td>Non bègue</td>
<td>26,23</td>
<td>20</td>
<td>41</td>
<td>4,956</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 16

Tableau croisé entre le niveau de scolarité et le groupe expérimental (N = 45).

<table>
<thead>
<tr>
<th>Groupe</th>
<th>Scolarité</th>
<th>1er cycle</th>
<th>2e cycle</th>
<th>3e cycle</th>
<th>Fisher’s Exact Test</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bègue</td>
<td>Secondaire</td>
<td>1</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Collégiel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non bègue</td>
<td></td>
<td>1</td>
<td>3</td>
<td>13</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tableau 17

Tableau croisé entre l’occupation principale et le groupe expérimental (N = 45).

<table>
<thead>
<tr>
<th>Groupe</th>
<th>Emploi temps plein</th>
<th>Emploi temps partiel</th>
<th>Emploi saisonnier</th>
<th>Aux études</th>
<th>Aux études et en emploi temps partiel</th>
<th>Fisher’s Exact Test</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bègue</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>13</td>
<td>1</td>
<td>2,279</td>
<td>0,964</td>
</tr>
<tr>
<td>Non bègue</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>14</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 18

Tableau croisé entre la consultation passée en orthophonie et le groupe expérimental (N = 45).

<table>
<thead>
<tr>
<th>Groupe</th>
<th>Consultation passée en orthophonie</th>
<th>χ²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bègue</td>
<td>Oui</td>
<td>30,364</td>
<td>0,000*</td>
</tr>
<tr>
<td></td>
<td>Non</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>Non bègue</td>
<td>Oui</td>
<td>30,364</td>
<td>0,000*</td>
</tr>
<tr>
<td></td>
<td>Non</td>
<td>2</td>
<td>22</td>
</tr>
</tbody>
</table>
Figure 1. Le ratio de Weber de chaque groupe en fonction de l’intervalle de temps dans les conditions de comptage silencieux (haut), comptage à voix haute (milieu) et comptage à voix haute avec expérimentateur (bas). Les barres d’erreurs représentent l’intervalle de confiance à 95 %.
Annexe H

Figure 2. L’erreur relative de chaque groupe en fonction de l’intervalle de temps dans les conditions de comptage silencieux (haut), comptage à voix haute (milieu) et comptage à voix haute avec expérimentateur (bas). Les barres d’erreurs représentent l’intervalle de confiance à 95 %.
Annexe I

Figure 3. Score d’anxiété en fonction de la condition pour le groupe bègue (n = 21) et le groupe non bègue (n = 24). Les barres d’erreur représentent l’intervalle de confiance à 95 %.

Rappel :
- Condition A = Compter silencieusement
- Condition B = Compter oralement
- Condition C = Compter oralement avec expérimentateur et enregistrement