Eddy current pulsed thermography for ballistic impact evaluation in basalt-carbon hybrid composite panels

HAI ZHANG,1,2,7,* STEFANO SFARRA,3,4 AHMAD OSMAN,2,5 FABRIZIO SARASINI,6 UDO NETZELMANN,2 STEFANO PERILLI,3 CLEMENTE IBARRA-CASTANEDO,1 and XAVIER P. V. MALDAGUE1

1Computer Vision and Systems Laboratory (CVSL), Department of Electrical and Computer Engineering, Laval University, Quebec G1V 0A6, Canada
2Department of Inspection of Components and Assemblies, Fraunhofer-Institute for Nondestructive Testing IZFP, 66123 Saarbruecken, Germany
3Department of Industrial and Information Engineering and Economics, University of L'Aquila, 67100 L'Aquila, Italy
4Tomsk Polytechnic University, Thermal Control Methods Laboratory, Tomsk 634050, Russia
5University of Applied Sciences Saarland, htw saar, 66117 Saarbruecken, Germany
6Department of Chemical Engineering Materials Environment, Sapienza University of Rome, 00184 Rome, Italy
7Current address: Center for Advanced Diffusion-Wave Technologies (CADIFT), Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
*Corresponding author: hai.zhang.1@ulaval.ca

Received 18 January 2018; revised 3 March 2018; accepted 3 March 2018; posted 5 March 2018 (Doc. ID 319879); published 3 April 2018

In this paper, eddy current pulsed thermography was used to evaluate ballistic impact damages in basalt-carbon hybrid fiber-reinforced polymer composite laminates for the first time, to our knowledge. In particular, different hybrid structures including intercalated stacking and sandwich-like sequences were used. Pulsed phase thermography, wavelet transform, principal component thermography, and partial least-squares thermography were used to process the thermographic data. Ultrasound C-scan testing and X-ray computed tomography were also performed for comparative purposes. Finite element analysis was used for validation. Finally, an analytical and comparative study was conducted based on signal-to-noise ratio analysis.

© 2018 Optical Society of America

OCIS codes: (110.3080) Infrared imaging; (110.6820) Thermal imaging; (120.4290) Nondestructive testing.

https://doi.org/10.1364/AO.57.000D74

NOMENCLATURE

BCB Basalt-carbon-carbon stacking sequence
CBC Carbon-basalt-carbon stacking sequence
CT X-ray computed tomography
ECPT Eddy current pulsed thermography
EOF Empirical orthogonal function
FEA Finite element analysis
INT Intercalated structure
PCT Principal component thermography
PLST Partial least-squares thermography
PPT Pulsed phase thermography
SAN Sandwich-like structure
SNR Signal-to-noise ratio
UT Ultrasound C-scan testing
WT Wavelet transform

1. INTRODUCTION

The evaluation of impact damages at the ballistic level in composite laminates, which have been considered as structural material in military vehicles, is becoming increasingly important. Military vehicles are usually designed to withstand a given ballistic impact. In the design, the weight must be reduced to the maximum extent, but the structure must retain the load-carrying abilities after a ballistic impact. With these needs, fiber-reinforced plastic (FRP) has been considered as a potential alternative to metals for military vehicle design. Nowadays, FRP based on aramid and ultra-high-molecular-weight polyethylene (UHMWPE) fibers have been used in body armors. However, aramid fiber has a low longitudinal compressive strength, polyethylene fiber has a relatively low temperature tolerance, and both of them have a poor matrix compatibility. These drawbacks restrict their use in military vehicles [1].

It has been proven that fiber hybridization is an effective approach to enhance the impact resistance of FRP, and its improvement is dependent on the positioning and dispersion of the different fibrous layers [2–4]. Recently, fiber hybridization is attracting increasing attention to gain a more gradual failure in brittle composites, a behavior similar to the one exhibited by metals and therefore referred to as pseudo-ductility [5–7].
An established strategy is the hybridization of carbon-glass fibers. This strategy combines the advantages of high strength and high stiffness from carbon fiber and the advantage of high toughness from glass fiber [8–10]. However, glass fiber has the disadvantage of a long degradable durability as a synthetic material [11]. In this regard, basalt fiber, as a natural material, has been considered as an alternative to glass fiber, taking into account the environmental benefits [12]. In this framework, an effective non-destructive testing and evaluation (NDT&E) technique for basalt-carbon fiber hybrid materials is needed.

Infrared thermography (IRT) [13], as a widely used NDT&E technique, has been used for the evaluation of composite materials [14–16]; for example optical excitation thermography (OET) [17] and vibrothermography (VT), based on the established heating methods, have been used for basalt-carbon fiber hybrid composite laminate evaluation [18]. Compared to ultrasound and x ray, infrared has the advantages of fast and safe inspection, inexpensive cost, being contactless, and having a high spatial resolution and fast acquisition rate [19,20]. Other emerging NDT&E techniques such as terahertz imaging cannot work on carbon fiber because its electric conductivity disturbs the polarization [21–25]. Therefore, the study on emerging infrared excitation methods such as lasers is attracting more attention for hybrid composite evaluation [26]. In this regard, eddy current pulsed thermography (ECPT) is also gaining increasing attention as an emerging approach.

In this paper, ECPT was used to evaluate ballistic impact damages in four basalt-carbon hybrid fiber-reinforced polymer composite laminates for the first time to our knowledge. They have sandwich-like (SAN) and intercalated (INT) structures with carbon-basalt-carbon (CBC) or basalt-carbon-basalt (BCB) stacking sequences, respectively. Pulsed phase thermography (PPT), wavelet transform (WT), principle component thermography (PCT), and partial least-squares thermography (PLST) were used to process the thermographic data. Ultrasound C-scan testing (UT) and X-ray computed tomography (CT) were also performed for comparative purposes. Finite element analysis (FEA) was used for validation. An analytical and comparative study was conducted based on signal-to-noise ratio (SNR) analysis.

2. SPECIMENS

The composite panels were produced by autoclave forming using plain weave basalt (220 g/m²) and carbon fiber (160 g/m²) reinforced epoxy prepregs with the same epoxy matrix (DT150). The composites were manufactured through a prepreg lay-up process with a (0°/90°) sequence and subsequent autoclave processing. The laminates were cured in SAN and INT structures as shown in Table 1 and in Fig. 1. An impact testing was performed for each configuration using a helium gas gun with a spherical tempered steel projectile (mass = 1.725 g, diameter = 7.5 mm). The impact speeds were 253.46 m/s for SAN and 230.74 m/s for INT. The impact speed was obtained from a high-speed camera. The laminate dimension is 100 mm × 100 mm as shown in Fig. 2.

The samples were mounted in a simply supported boundary condition along their edges using aluminum guides. To measure impact and residual velocity, the tests were monitored using a high-speed digital camera APX FASTCAM by Photron with a data-acquisition system set to take 36,000 frames/s placed beside the sample holder. For better recording quality, a high-intensity halogen light M18 by ARRI was used. The image acquisition is fundamental since the gathered data are processed by Photron FASTCAM Viewer in order to obtain impact and residual velocities, which were calculated by dividing the travelled distance of the projectile between two following digital frames and the corresponding time interval.

Figure 3 shows the UT results based on a phased-array probe (2.25 MHz, 64 elements). More extended delaminated areas can be observed in the INT structures than in the SAN structures from the back side, but the contrast of the former is more...
slightly than the latter. On the contrary, less extended damaged areas are observed from the front side of the impacts. This is because the damaged areas are more extended in the INT structures, but the impact energies are more concentrated on the central locations of the impacts due to the multiple basalt–carbon interfaces.

Figure 4 shows the 100 μm resolution CT slices. The top-view slices were obtained from a mediate thickness (∼2 mm). The side-view slices are obtained at the impact central locations. It can be observed that the delaminations were generated at the near-surface interfaces between the skin layers and the core layers in the SAN structures. On the contrary, more damage is generated and extended in the central thickness in the INT structures. For the INT structures, the contrast of slices is relatively lower than for the SAN slices, and therefore it is difficult to identify and even measure these damages quantitatively.

Both UT and CT indicate that the impact energies were converted into either more delaminations due to the lower interlaminar shear strength or more splitting damages due to the inherent limited ductility. These phenomena will be studied and compared by ECPT and then validated by FEA in this paper.

3. METHODOLOGY

A. Experiments

ECPT involves multi-physical interactions with electromagnetic-thermal phenomena including induced eddy currents, Joule heating, and heat conduction [27–29]. Figure 5(a) shows the ECPT schematic configuration in the transmission mode used in this paper. The induction heater (7 kW) generates a pulse excitation signal (150 kHz, 0.2 s duration), which is a period of high-frequency alternating current with high amplitude. The current is then driven into an inductive coil [10 cm x 10 cm, see Fig. 5(b)] positioned on the front side of the impacted surface of the specimens with a small distance. An infrared camera FLIR SC5000 (320 x 256 pixels, 150 fps) was used to record the temperature profile (2 s duration).

When the current passes through the coil, it generates eddy currents. These eddy currents are related to a subsurface penetration depth δ, based on an exponentially damped skin effect. The latter can be calculated from

\[
\delta = \frac{(\pi \mu \sigma f)^{1/2}}{2},
\]

where \(f \) is the excitation frequency, \(\sigma \) is the electrical conductivity, and \(\mu \) is the magnetic permeability.

The temperature of conductive material increases due to resistive heating from the induced eddy current, which is known as Joule heating. It can be expressed as

\[
Q = \frac{1}{\sigma} |J| \cdot E = \frac{1}{\sigma} |\sigma E|^2,
\]

where \(Q \) is the sum of the generated energy, and \(J \) is the eddy current density [30–32].

For basalt-carbon fiber hybrid laminates, the thermal diffusion behavior is complex, and it is dependent on the structures because carbon fiber is conductive while basalt fiber is insulating.

B. Infrared Image Processing

1. PPT

PPT [33] can extract amplitude and phase images using a Fourier transform (FT). It provides the possibility to obtain quantitative results in a straightforward manner. Phase is more useful than amplitude because it can retrieve a deeper information. In addition, phase is less affected by environmental reflections, emissivity variations, non-uniform heating, surface geometry, and orientation [34].

2. WT

WT can generate a collection of time-frequency representations of the signal and with different resolutions [35]. A complex

<table>
<thead>
<tr>
<th>Structure</th>
<th>Young’s Modulus E [GPa]</th>
<th>Density ρ [kg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basalt</td>
<td>93</td>
<td>2630</td>
</tr>
<tr>
<td>Carbon</td>
<td>230</td>
<td>1780</td>
</tr>
<tr>
<td>Steel</td>
<td>205</td>
<td>7820</td>
</tr>
</tbody>
</table>
Morlet wavelet, as recommended in Ref. [36], was selected as the mother wavelet. The translation factor T (related to recorded time) with the fixed scale factor S (related to frequency) of 200 were also used.

3. **PCT**

PCT [37] can extract image features and reduce undesirable signals. Different from classical principal component analysis, PCT relies on singular value decomposition (SVD), which extracts

Fig. 6. ECPT results.
spatial and temporal data from a matrix in a compact manner by projecting original data onto empirical orthogonal functions (EOFs). Original features can often be adequately represented by only a few EOFs. PCT is also suitable to be combined with other image processing techniques, e.g., in Refs. [38–40].

4. PLST
PLST [41] is based on a statistical correlation method known as partial least-squares regression (PLSR). It computes loading and score vectors, which are correlated to the predicted block, while describing a large amount of the variations in the predictor matrix. The matrix corresponds to the obtained surface temperature.

C. SNR Analysis
SNR is used in this paper as a means to compare the sensitivity of the applied image processing algorithms. SNR is expressed in decibels (dB) following the 20 log rule, which is often used in imaging applications, as follows [42]:

\[
SNR = 20 \cdot \log_{10} \frac{|S_d - S_a|}{\sigma_{Sa}}.
\]

where \(S_d\) is the signal intensity, \(S_a\) is the sound area intensity, and \(\sigma_{Sa}\) is the standard deviation that represents the noise variability.

Fig. 7. Surface temperature profile curves for both damaged (red color) and undamaged (blue color) regions.
SNR analysis can provide important references for the sensitivity of each technique when it is used to compare the detectability of similar features or defects.

D. Finite Element Analysis

Numerical simulations were performed using COMSOL Multiphysics. A 100 mm square geometry of the layer/woven fabrics was built. There are 6.7 warps/cm and 7.7 wefts/cm for the basalt fiber layers, while there are 3.9 warps/cm and 4.1 wefts/cm for the carbon fiber layers. A homogeneous isotropic steel sphere with a diameter of 7.5 mm and a mass of 1.725 g was built to correspond to the experiments. The same impact speeds to the experiments were set up at 253.46 m/s for SAN and 230.74 m/s for INT (see Section 2).

Taking into account the peculiarities of the structure, the mesh was built by tetrahedral elements. After the construction of the mesh, the materials used for the fabrication were assigned by linking each layer to the proper values of Young’s modulus and density, respectively. In Table 2, these values are reported both for the fibers and the steel that constitutes the bullet.

4. RESULT ANALYSIS

Figure 6 shows the ECPT results. Compared to CT slices (see Fig. 4), ECPT images have a higher contrast, and therefore the damages can be seen more clearly. Compared to UT (see Fig. 3), ECPT can provide more damage details, such as more concentrated impact energies or more extended delaminated areas by various contrast.

In Fig. 6, PPT amplitude shows a similar performance to the raw thermographic images because both of them represent the amplitude characterizations of the thermal signals. WT and PPT phase show a similar image feature. This is understandable because WT can be considered as an extension of the FT, which preserves time information, and it is correlated to the damage depth, which maintains the features from the FT. In wavelet analysis, a fully scalable modulated window was used instead of a fixed truncation window used in the FT. PCT and PLST provide the most features, and they show a similar performance because both of them extract the main image characteristics by regressing the thermal signal time matrix.

An interesting phenomenon can be found in the temperature profile curves in Fig. 7. For the CBC structures, a temperature ascent-descent behavior can be observed clearly as shown in Figs. 7(a) and 7(c). However, only a temperature ascent behavior can be observed for the BCB structures as shown in Figs. 7(b) and 7(d). This is because an eddy current was only generated in the conductive carbon fiber layers, and it did not exist in the insulating basalt fiber layers. Therefore, the surface temperature profiles only show a heating behavior for the insulating basalt fiber skins in the BCB structures.

In the SAN-CBC temperature profile, as shown in Fig. 7(a), higher temperature values are reached for both damaged (red color) and undamaged (blue color) regions than the temperature values in the SAN-BCB structure [see Fig. 7(c)]. This is because according to Eqs. (1) and (2), there is a higher generated energy in the thicker five-layer carbon fiber skin in the SAN-CBC structure than in the INT-CBC structure, which only has a two-layer carbon fiber skin. On the contrary, a lower energy was generated in the SAN-BCB structure [see Fig. 7(b)] than in the INT-BCB structure [see Fig. 7(d)] because the former has a thicker seven-layer insulating basalt fiber skin than the latter, which only has a two-layer insulating basalt fiber skin.

Figure 8 shows the SNR values for ECPT applying the PPT phase, WT, PCT, and PLST algorithms. For the SAN structures, PPT and WT have larger SNR values than PCT and PLST. On the contrary, the former has smaller SNR values than the latter in the INT structure. This indicates that PPT and WT, which are both based on a FT, are more suitable to the detection of the delaminations between the skin and the core layers in the SAN structures, while PCT and PLST are more suitable to the evaluation of interlaminar damages in the INT structures. Specifically, PPT shows a higher contrast than WT, while PLST shows a higher contrast than PCT.

As discussed in Section 2 and as validated by CT in Fig. 4, the INT structure has more extended damaged areas, but the impact energies were converted into splitting damages more at the central locations of the impacts. This is the reason why PCT and PLST are more suitable, because they are more sensitive to small feature identifications. On the contrary, PPT and WT are less affected by the sound area noise. The FEA results in Fig. 9 can also validate that the extended damaged areas in
the INT structures are larger, which corresponds to the discussions in this paper.

5. CONCLUSIONS

ECPT can be used to evaluate basalt-carbon hybrid fiber-reinforced polymer composite laminates. It can provide a higher contrast and a better image performance than CT, while it can also provide more detailed information than UT.

Different surface temperature profile behaviors are observed for the CBC and the BCB stacking sequences, respectively. This is due to an eddy current that can only be generated in the conductive carbon fiber layers. More detailed analysis has been done in the context.

Image processing can improve the image performance for ECPT. Specifically, PPT and WT are more suitable to the SAN structures, while PLST and PCT are more suitable to the INT structures.

Absorbed energies are more easily converted into delamination in the SAN structures due to the lower interlaminar shear strength. On the contrary, it is more easily converted into splitting damages in the INT structures due to the inherent limited ductility. More extended damaged areas are generated in the INT structures, but the impact energies are more concentrated on the impact locations due to the multiple basalt–carbon interfaces. FEA was performed, and it validated the above-mentioned discussions.

Funding. Natural Sciences and Engineering Research Council of Canada (NSERC) (Discovery Grant); Canada Research Chairs (MiViM); Fonds de Recherche du Québec—Nature et Technologies (FRQNT) (International Internship Program no. 211450).

REFERENCES