Best Practices 3D Cadastres

Extended version

Editor: Peter van Oosterom
The front and the back cover illustrations show screenshots of the prototype of a web-based 3D Cadastre dissemination system built on top of Google Earth. The cadastral parcels are elevated 50 meters in order to visualize the relationship with the topography. The 2D parcels (from the DCDB) are draped over a terrain elevation model, the building format Survey Plans are converted into 3D parcels (property units in building), the volumetric format Survey Plans are also converted 3D parcels and correspond to various types of objects: below (tunnel parts), above (property under ramp to bridge), and through the earth surface (air shaft).

**Front cover:** looking from the South-East towards Kangaroo point (Brisbane, Queensland), note the correspondences between the cadastral objects and the topographic objects, 50 meters below.

**Back cover:** looking from the North-West towards Kangaroo point, note the reddish volumetric parcels (tunnel parts) bellow the semi-transparent greenish surface parcel, a bit further inland many greyish 3D parcels from building format Survey Plans (some with black, some with white edges).

Queensland Digital Cadastral Database (DCDB) data and Survey Plan data provided by Sudarshan Karki (Queensland Government, Department of Natural Resources, Mines and Water), the terrain elevation model provided by Martin Kodde (Fugro) / Glen Ross-Sampson (Roames), conversion from building format and volumetric format Survey Plans, and draping of 2D parcels over terrain elevation model by Rod Thompson (in the context of the on-going 3D Cadastral visualization project with Barbara Cemellini, Marian de Vries, and Peter van Oosterom, TU Delft).
CONTENT

Preface ........................................................................................................................................................................... V
   Chryssy Potsiou

Organization of the Working Group on 3D Cadastres ................................................................. VII

Introduction ................................................................................................................................................................. IX
   Peter van Oosterom

Chapter 1. Legal foundations ............................................................................................................................... 1
   Dimitrios Kitsakis, Jesper Paasch, Jenny Paulsson, Gerhard Navratil, Nikola Vučić, Marcin Karabin, Mohamed El-Mekawy, Mila Koeva, Karel Janečka, Diego Erba, Ramiro Alberdi, Mohsen Kalantari, Zhixuan Yang, Jacynthe Pouliot, Francis Roy, Monica Montero, Adrian Alvarado, and Sudarshan Karki

Chapter 2. Initial Registration of 3D Parcels ............................................................................................. 67
   Efi Dimopoulou, Sudarshan Karki, Miodrag Roić, José-Paulo Duarte de Almeida, Charisse Griffith-Charles, Rod Thompson, Shen Ying, Jesper Paasch, and Peter van Oosterom

Chapter 3. 3D Cadastral Information Modelling ..................................................................................... 95
   Peter van Oosterom, Christiaan Lemmen, Rod Thompson, Karel Janečka, Sisi Zlatanova and Mohsen Kalantari

Chapter 4. 3D Spatial DBMS for 3D Cadastres .................................................................................... 133
   Karel Janečka, Sudarshan Karki, Peter van Oosterom, Sisi Zlatanova, Mohsen Kalantari, and Tarun Ghawana

Chapter 5. Visualization and New Opportunities .................................................................................. 183
   Jacynthe Pouliot, Claire Ellul, Frédéric Hubert, Chen Wang, Abbas Rajabifard, Mohsen Kalantari, Davood Shojaei, Behnam Atazadeh, Peter van Oosterom, Marian de Vries, and Shen Ying

Biographical Notes and Contact Details ................................................................................................. 231
PREFACE

Over the last 15 years or so, a number of political, economic, environmental and social factors as well as the rapid technological innovation have profoundly changed the outlook for good management of land, the sea and especially the built environment. In this context, the issue of security of tenure and registration of property rights is recognized as an increasingly important component for eliminating poverty and achieving sustainable development of land, real estate and property markets in all UN member states, particularly in urban areas.

In view of the Sustainable Development Agenda 2030 all UN member states are developing and modernizing their cadastre and land registration systems and in parallel formalizing their property markets. Present land administration systems and cadastres need re-engineering; they must continually evolve to cope with the ongoing megatrends, such as urbanization, demographic change, societal disparities, the digital transformation, volatile global economy, anthropogenic environmental damage and so on.

Much of the current research by the surveying profession in this field focuses on issues related to 3D geo-information, tools for data collection, cloud solutions, data management, optimizing processes and web-based information dissemination; standardization of 3D information, advanced modelling and visualization, as well as formalizing and building sustainable real estate markets as a pillar for robust economic urban growth; and related policies, legal and institutional aspects and knowledge sharing in operational experiences, the emerging challenges and the good practices. The significance of these areas of interest for the good management of land, the sea and especially the built environment is well understood.

It is mainly about people and their living in urban settlements. It is mainly about developing the “cities we want”, digitally networked and intelligent. And we, as geo-information professionals, vendors, providers, managers, professionals as well as academics and researchers, are expected to develop services and tools to deliver administrative, economic and social benefits. Our colleagues, representatives of business, academia and public administration; managers of geodata from all over the world; young entrepreneurs and creative minds; all are working toward the same goal, trying to increase the “value” of geodata for the people. They do so in order to get more benefit, more transparency, more safety, more environmental quality, more growth, more fairness, more efficiency in governance of urban areas, more smart cities.

No reality has a more direct bearing on the subject of 3 dimensional geo-information and cadaster than the growth of large cities, especially in the developing countries of the world, and especially in the phenomenon of the mega cities. For our young readers let me give some impressive information. A mega city is an urban area of 10 million population or more. The Economist “Pocket World in Figures” 2016 Edition, lists thirty-three mega cities of the world from Bangalore, India at ten point one million, thirty-third on the list, to number one Tokyo at thirty-eight million.

The World Health Organization (WHO) has reported that in 2014 fifty-four percent of the world’s people lived in urban areas, up from thirty-four percent in 1960. The tipping point, according to most authorities, occurred in 2007 when there were more urban dwellers than rural residents in the world: the so-called “urban millennium.”

The United Nations predict that by 2050 sixty-six percent of the world’s population will live in urban areas.
Much is being written about the growth of urban populations and the concurrent growth of urban infrastructures and institutions to support this huge growth of two-thirds of the world’s people in the cities. Of all the institutions that must be developed to anticipate, keep abreast of and support this growth, the cadaster stands foremost in the interest of commerce, real estate investment, municipal revenue, and personal property security, not to mention urban planning and management.

As the cities grow they grow vertically as well as horizontally thereby introducing the element of the third dimension.

Recent innovative thinking has introduced the concept of a multi-dimensional multi-purpose land information system. It is a logical extension of the 3D cadaster concept, by adding the time dimension and the detail/scale dimension to the equation.

In a discussion of “cost effectiveness” one must consider time, that 4th dimension that we speak of. In time, we are usually referring to land titles history and time-sharing rights, or how the shape and size of land parcels and cadastral objects change over time, but it is also a matter of time-cost in the construction of the cadaster, as well as the time/property value relationship. As the great cities of the world become mega, the value of land and its improvements grow as well. Thus the time/value relationship and its impact on land administration and the need for continuing research on fundamental policy issues of technical administrative, legal and financial aspects of land administration.

This publication is a further contribution of FIG in this on-going process of improving land administration systems. It responds to the need for international research in building effective land administration infrastructures with modern information technology that will support the 2030 global policy goals for sustainable development. This study takes into account the recent developments that have taken place, and I hope that it will lead to a better understanding of the concept of a 3D cadaster.

Prof Chryssy A Potsiou
President of FIG
ORGANIZATION OF THE WORKING GROUP ON 3D CADASTRES

The website of the Working Group (WG) can be found at http://www.gdmc.nl/3DCadastres/. This website contains the scope description of the WG, workshops, conducted questionnaires, literature, members, etc. Peter van Oosterom is the current WG chair (term 2014-2018).

Members of the FIG joint commission 3 and 7 Working Group on 3D Cadastres

Argentina  Diego Alfonso Erba
Australia  Ali Aien, Don Grant, Mohsen Kalantari, Sudarshan Karki, Davood Shojaei, Rod Thompson
Austria  Gerhard Muggenhuber, Gerhard Navratil
Bahrain  Neeraj Dixit, Ammar Rashid Kashram
Brazil  Andréa Flávia Tenório Carneiro
Canada  Francois Brochu, Louis-André Desbiens, Paul Egesborg, Marc Gervais, Jacynthe Pouliot, Francis Roy
China  Renzhong Guo, Zhang Ning, Shen Ying
Costa Rica  Andres Hernández Bolaños
Croatia  Miodrag Roic
Cyprus  Elikkos Elia
Czech Republic  Karel Janecka
Denmark  Lars Bodum, Esben Munk Sørensen, Christian Thellufsen
Finland  Jani Hokkanen, Arvo Kokkonen, Tarja Myllymäki
France  Claire Galpin, Hervé Halbout
Germany  Markus Seifert
Greece  Efi Dimopoulou
Hungary  Gyula Iván, Andras Osskó
India  Tarun Ghawana, Pradeep Khandelwal
Indonesia  Trias Aditya, S. Subaryono
Israel  Yerach Doytsher, Joseph Forrai, Gili Kirschner, Yoav Tal
Italy  Diego Navarra, Bruno Razza, Enrico Rispoli, Fausto Savoldi
Kazakhstan  Natalya Khairudinova
Kenya  David Siriba
Macedonia  Gjorgji Gjorgjiev, Vanco Gjorgjiev
Malaysia  Teng Chee Hua, Alias Abdul Rahman
Nepal  Babu Ram Acharya
The Netherlands  Benedict van Dam, Christiaan Lemmen, Hendrik Ploeger, Martijn Rijsdijk, Jantien Stoter
Nigeria  Thomas Dabiri
Norway  Lars Elsrud, Olav Jenssen, Lars Lobben, Tor Valstad
Poland  Jaroslaw Bydlosz, Marcin Karabin
Portugal  José Paulo Elvas Duarte de Almeida, João Paulo Fonseca Hespanha de Oliveira, Mateus Magarotto
Russian Federation  Sergey Sapelnikov, Natalia Vandysheva
Serbia  Rajica Mihajlovic, Nenad Visnjevac
Singapore  Victor Khoo, Kean Huat Soon
South Korea  Youngho Lee
Spain  Amalia Velasco
Sweden  Peter Ekbäck, Jesper Paasch, Jenny Paulsson
Switzerland  Helena Aström Boss, Robert Balanche, Laurent Niggeler
Trinidad and Tobago  Charisse Griffith-Charles
Turkey  Cemal Biyik, Osman Demir, Fatih Döner
United Kingdom  Gareth Robson, Carsten Rönsdorf
USA  Bod Ader, David Cowen, Carl Reed, Alex Smith
INTRODUCTION

At the end of the two most recent 4-year terms (2010-2014 and 2014-2018) of the joint commission 3 ‘Spatial Information Management’ and commission 7 ‘Cadastre and Land Management’ FIG Working Group on 3D Cadastres, it was decided to collect the best known practices in a single FIG publication. Key authors were invited to lead a chapter on one of the following topics:

- Chapter 1. Legal foundations (Dimitrios Kitsakis),
- Chapter 2. Initial Registration of 3D Parcels (Efi Dimopoulou),
- Chapter 3. 3D Cadastral Information Modelling (Peter van Oosterom),
- Chapter 4. 3D Spatial DBMS for 3D Cadastres (Karel Janečka), and
- Chapter 5. Visualization and New Opportunities (Jacynthe Pouliot).

The mentioned lead authors have each teamed-up with a group of authors to produce their chapters. A lot of inspiration was found in the earlier 3D Cadastres activities of FIG, such as the various 3D Cadastres workshops, the two 3D Cadastres questionnaires, and the presentations and publications at the 3D Cadastres sessions at every FIG Working Week and Congress. The result is a quite extensive FIG publication of about 250 pages, which has been language checked by native English speakers.

Based on this long version also a shorter version of about 80 pages is produced. The short version will become available as FIG publication both in hard-copy (paper) and soft-copy (pdf online). The long version will only be published in soft-copy form and in the style of the FIG proceedings.

Both versions are expected to be available at the FIG congress 2018 in Istanbul, Turkey. Every chapter will be shortly introduced by one of the authors at the FIG congress 2018.

1. HISTORIC BACKGROUND

The FIG publication ‘3D Cadastres Best Practices’ has quite a long history. Many 3D Cadastral activities have been conducted during the past two decades: five FIG 3D Cadastres workshops, sessions at FIG working weeks and congresses, three special issues in international scientific journals, several 4-year terms (2004-2008, 2010-2014 and 2014-2018) of the joint commission 3 and commission 7 FIG Working Group on 3D Cadastres, and two questionnaires (2010 and 2014). Below an overview of the workshops organized so far, which are all published in FIG proceedings:

- International FIG Workshop on 3D Cadastres, 28-30 November 2001, Delft, The Netherlands;
- 2nd International Workshop on 3D Cadastres, 16-18 November 2011, Delft, The Netherlands;
- 3rd International FIG Workshop on 3D Cadastres, 25-26 October 2012, Shenzhen, China;
- 4th International FIG 3D Cadastre Workshop, 9-11 November 2014, Dubai, United Arab Emirates;
- 5th International FIG Workshop on 3D Cadastres, 18-20 October 2016, Athens, Greece.

Closely related to these workshop are the special issues of international scientific journals. Three times the initiative was taken to invite selected authors, based on review of full
workshop papers and presentations / discussions at the workshop, to submit a significantly extended / changed version to the special issue. After submitting, the paper has gone through the peer review process of the journal. This resulted in the following three special issues as indicated by their introductions/editorials:


The first more concrete versions of texts towards the FIG publication ‘3D Cadastres Best Practices’ was in the form of four overview reports, each presented at the “5th International FIG Workshop on 3D Cadastres”, organized in Athens, Greece, 18–20 October 2016:

2. Efi Dimopoulou, Sudarshan Karki, Roic Miodrag, José-Paulo Duarte de Almeida, Charisse Griffith-Charles, Rod Thompson, Shen Ying and Peter van Oosterom: Initial Registration of 3D Parcels.
4. Jacynthe Pouliot, Frédéric Hubert, Chen Wang, Claire Ellul and Abbas Rajabifard: 3D Cadastre Visualization: Recent Progress and Future Directions.

Discussions during and after the 2016 Workshop resulted in the decision to split Chapter 3 into two parts: one on information modelling and one on data management. The author teams were further reinforced and each produced a next version of their chapters, which were reviewed by colleagues from other author teams. These actions were conducted before the FIG Working Week, Helsinki, Finland, 29 May - 2 June 2017 and discussed at the working week by representatives of each of the chapters. The review comments were processed in the second half of 2017 by the authors teams and all chapters were proof read by native English speakers and finally edited to get an uniform style.

2. CONTENT OF THE FIVE CHAPTERS
In this section the titles, authors and summaries of the five chapters are given for a quick content overview: Chapter 1: Legal foundations, Chapter 2: Initial Registration of 3D Parcels, Chapter 3: 3D Cadastral Information Modelling, Chapter 4: 3D Spatial DBMS for 3D Cadastres and Chapter 5: Visualization and New Opportunities.

2.1 Chapter 1: Legal foundations
The author team consisted of the following persons: Dimitrios Kitsakis, Jesper Paasch, Jenny Paulsson, Gerhard Navratil, Nikola Vučić, Marcin Karabin, Mohamed El-Mekawy, Mila Koeva, Karel Janečka, Diego Erba, Ramiro Alberdi, Mohsen Kalantari, Zhixuan Yang, Jacynthe Pouliot, Francis Roy, Monica Montero, Adrian Alvarado, and Sudarshan Karki.
Summary: The concepts of three-dimensional (3D) real property have been the subject of increased interest in land use management and research since the late ‘90s. Literature provides various examples of extensive research towards 3D Cadastres as well as those that are already implementing 3D cadastral systems. However, in most countries the legal aspects of 3D real property and its incorporation into 3D cadastral systems have not been so rigorously examined. This paper compares and discusses 3D property concepts in 15 cadastral jurisdictions, based on the authors’ national experience, covering Europe, North and Latin America, Middle East and Australia. Each of the legal system in these cadastral jurisdiction are based on different origins of Civil Law, including German, Napoleonic and Scandinavian Civil Law, which can prove useful to research in other Civil Law jurisdictions interested in introducing 3D cadastral systems. These jurisdictions are at different stages of introducing and implementing a 3D cadastral system. This contributes to the detection of the 3D real property concepts that apply as well as deficiencies that prohibit introduction of 3D cadastral systems, while highlighting challenges that may have not yet surfaced in individual jurisdictions. This paper aims to present the different legal concepts regarding 3D real property in the examined countries, focusing on the characteristic features of cadastral objects described as 3D within each country’s legal and cadastral framework. The analysis of the case studies revealed that the countries are on different stages of 3D Cadastral implementation, starting from countries with operational 3D cadastral systems, to others where there is yet no interest in introducing a 3D cadastral system. This paper presents the nature of 3D cadastral objects in each country, as well as differences in the regulatory framework regarding definition, description and registration. The paper continues the legal workshop discussions of the 4th International Workshop on 3D Cadastres in Dubai 2014 by analysing the legal concepts of 3D cadastres in the above-mentioned countries. The outcome is an overview and discussion of existing concepts of 3D property describing their similarities and differences in use, focusing on the legal framework of 3D cadastres. The article concludes by presenting a possible way forward and identifies what further research is needed which can be used to draft national and international research proposals and form legislative amendments towards introduction of national 3D cadastral systems.

2.2 Chapter 2: Initial Registration of 3D Parcels

The author team consisted of the following persons: Efi Dimopoulou, Sudarshan Karki, Miodrag Roić, José-Paulo Duarte de Almeida, Charisse Griffith-Charles, Rod Thompson, Shen Ying, Jesper Paasch, and Peter van Oosterom.

Summary: Registering the rights of a 3D parcel should provide certainty of ownership, protection of rights and unambiguous spatial location. While not all cadastral jurisdictions in the world maintain a digital cadastral database, the concepts of such registration hold true regardless of whether it is a paper-based cadastre or a digital one. Similarly, the motivations and purpose for the creation of a 2D cadastre for individual jurisdictions applies to 3D cadastral as well. It provides security of ownership for 3D parcels, protects the rights of the owners, and provides valuable financial instruments such as mortgage, collateral, valuation and taxation. The current life cycle of the development of a land parcel includes processes start from outside the cadastral registration sphere, such as zoning plans and permits, but has a direct impact on how a certain development application is processed. Thus, in considering the changes required to allow a jurisdiction to register 3D, it is important to note the sphere of influence that could have an impact on 3D registration. These include planners, notaries, surveyors, data managers and registrars; however for the purpose of this paper, the research is
focused on the core 3D aspects that are institutional, legal and technical. This paper explores approaches and solutions towards the implementation of initial 3D cadastral registration, as derived by current procedures of registration of 3D parcels in various countries worldwide. To this end, the paper analyses the categorisations and approaches of 3D spatial units and examines the validation requirements (constraints) on a cadastral database, at various levels of maturity. In this view, 3D data storage and visualization issues are examined in relation to the level of complexity of various jurisdictions, as provided by the results of the country inventory combined with a worldwide survey in 2010 and updated in 2014 (Van Oosterom, et al., 2014). It appears that significant progress has been achieved in providing legal provisions for the registration of 3D cadastres in many countries and several have started to show 3D information on cadastral plans such as isometric views, vertical profiles or text environment to facilitate such data capture and registration. Moreover, as jurisdictions progress towards an implementation of 3D cadastre, much 3D data collected in other areas (BIM, IFC CityGML files, IndoorGML, InfraGML and LandXML) open up the possibility of creating 3D cadastral database and combining with the existing datasets. The usability, compatibility and portability of these datasets is a low cost solution to one of the costliest phases of the implementation of 3D cadastres, which is the initial 3D data capture.

2.3 Chapter 3: 3D Cadastral Information Modelling

The author team consisted of the following persons: Peter van Oosterom, Christiaan Lemmen, Rod Thompson, Karel Janečka, Sisi Zlatanova and Mohsen Kalantari.

Summary: In this chapter we address various aspects of 3D Cadastral Information Modelling. Of course, this is closely related to the legal framework and initial registration as presented in the first two chapters. Cadastral data models, such as the Land Administration Domain Model, which include 3D support, have been developed for legal information modelling and management purposes without providing correspondence to the object’s physical counterparts. Building Information Models and virtual 3D topographic/city models (e.g. LandXML, InfraGML, CityGML, IndoorGML) can be used to describe the physical reality. The main focus of such models is on the physical and functional characteristics of urban structures. However, by definition, those two aspects need to be interrelated; i.e. a tunnel, a building, a mine, etc. always have both a legal status and boundaries as well as a physical description; while it is evident that their integration would maximise their utility and flexibility to support different applications. A model driven architecture approach, including the formalization of constraints is preferred. In the model driven architecture design approach as proposed by the Object Management Group the information model, often expressed in the form of a UML class diagram is the core of the development. This so-called Platform Independent Model (PIM, as presented in the current chapter) is then transformed into Platform Specific Model (PSM). This could be a relational database schema for a spatial DBMS (as will be discussed in the next chapter), or XML schema for a data exchange format or the structure of maps, forms and tables as used in the graphic user interface of a spatial application. Constraints have proved effective in providing the solutions needed to avoid errors and enable maintenance of data quality; thus the need to specify and implement them. This chapter explores possibilities of linking 3D legal right, restriction, responsibilities spaces, modelled with the Land Administration Domain Model (ISO 19152), with physical reality of 3D objects (described via CityGML, IFC, InfraGML, etc).
2.4 Chapter 4: 3D Spatial DBMS for 3D Cadastres
The author team consisted of the following persons: Karel Janečka, Sudarshan Karki, Peter van Oosterom, Sisi Zlatanova, Mohsen Kalantari, and Tarun Ghawana.

Summary: Subdivision of land parcels in the vertical space has made it necessary for cadastral jurisdictions to manage cadastral objects both in 2D as well as 3D. Modern sensor and hardware capabilities for capture and utilisation of large point clouds is one of the major drivers to consider Spatial Database Management Systems (SDBMS) in 3D and organisations are still progressing towards it. 3D data models and their topological relationships are two of the important parts of 3D spatial data management. 3D spatial systems should enable data models that handle a large variety of 3D objects, perform automated data quality checks, search and analysis, rapid data dissemination, 3D rendering and visualisation with close linkages to standards. This chapter asserts that while there has been work done in defining 2D and 3D vector geometry in standards, it is still not sufficient for 3D cadastre purposes as 3D cadastral objects have a much more rigorous definition. The Land Administration Domain Model (LADM), which is an ISO Standard, addresses many of the issues in 3D representation and storage of 3D data in a database management system (DBMS). The chapter further discusses the various approaches to storing 3D data such as through voxels, or point cloud data type and elaborates on the characteristics of a 3D DBMS capable of storing 3D data. Approaches for spatial indexing to improve the fast access of data and the various available options for a 3D geographical database system are presented. Several spatial operations on and amongst 3D objects are illustrated with linkages to the current standards including the LADM. Next, construction of 3D topological and geometrical models based on standards and including their characteristics is discussed. Current 3D spatial database management systems and their characteristics, including some comparison between selected DBMS including the hardware capabilities are elaborated in detail. Finally, the chapter proposes a 3D topology model based on Tetrahedron Network (TEN) synchronised with LADM specifications for 3D cadastral registration. This topological model utilises surveying boundaries to generate 3D cadastral objects with consistent topology and rapid query and management capabilities. The definition for validation of 3D solids also considers the automatic repair of invalid solids. Point cloud and TEN related data structures available in SDBMSs are also investigated to enable storage of non-spatial attributes so that database updates would store all spatial and attribute information directly inside the spatial database.

2.5 Chapter 5: Visualization and New Opportunities
The author team consisted of the following persons: Jacynthe Pouliot, Claire Ellul, Frédéric Hubert, Chen Wang, Abbas Rajabifard, Mohsen Kalantari, Davood Shojaei, Behnam Atazadeh, Peter van Oosterom, Marian de Vries, and Shen Ying.

Summary: This chapter proposes a discussion on opportunities offered by 3D visualization to improve the understanding and the analysis of cadastre data. It first introduce the rationale of having 3D visualization functionalities in the context of cadastre applications. Second the publication outline some basic concepts in 3D visualization. This section specially addresses the visualization pipeline as a driven classification schema to understand the steps leading to 3D visualization. In this section is also presented a brief review of current 3D standards and technologies. Next is proposed a summary of progress made in the last years in 3D cadastral visualization. For instance, user’s requirement, data and semiotics, and platforms are highlighted as main actions performed in the development of 3D cadastre visualization. This
review could be perceived as an attempt to structure and emphasize the best practices in the domain of 3D cadastre visualization and as an inventory of issues that still need to be tackled. Finally, by providing a review on advances and trends in 3D visualization, the paper initiates a discussion and a critical analysis on the benefit of applying these new developments to cadastre domain. This final section discusses about enhancing 3D techniques as dynamic transparency and cutaway, 3D generalization, 3D visibility model, 3D annotation, 3D data and web platform, augmented reality, immersive virtual environment, 3D gaming, interaction techniques and time.

3. THE FUTURE OF 3D CADASTRES, THE NEXT STEPS
The FIG publication ‘3D Cadastres Best Practices’ hopes to provide a clear and comprehensive overview to both the newcomers and experts in the 3D Cadastres community. For sure this is just a snapshot of the current state and our knowledge must further evolve with the many challenges that are ahead of us, including the emerging mega-cities due to further urbanization. Many developments are ahead of us and to name just a few: revision of LADM (with potentially more detailed 3D spatial profiles), Marine Cadastre, deep integration of 3D space and time (4D Cadastre), new data acquisition techniques (including VGI), growing information infrastructure (of which Land Administration is a part), and new visualization and dissemination techniques (including VR and AR). Already, the next step of our on-going journey is planned: the 6th International FIG Workshop on 3D Cadastres, to be organized in Delft, The Netherlands, 2–4 October 2018. And also this time a special issue on 3D Cadastres is planned: to be published in Land Use Policy (2019 or 2020).

ACKNOWLEDGEMENTS
It was a great pleasure to be involved in the creation of the FIG publication ‘3D Cadastres Best Practices’. This was mainly due to the constructive and open collaborations of all involved. First of all I would like to thank the lead authors, the authors of chapters in the publication, but also the authors of papers at past FIG 3D Cadastres workshops and other FIG events, for their continuous contributions to the field of 3D Cadastres. Next, it is important to remember the hard work the reviewers (programme committees members) have put into all their constructive comments and adding many ideas and views to those of the original authors. Many, many thanks for this often rather invisible task. Finally, I would like to thank Sudarshan Karki for the English proof reading of an incredible amount of pages and Dirk Dubbeling for the last checks and formatting to make sure the publication gets an uniform look and feel. Great teamwork, thanks for the many years of collaborations.

Prof Peter van Oosterom,
chair of the FIG 3D working group on 3D Cadastres
Chapter 5. Visualization and New Opportunities

Jacynthe POULIOT, Canada, Claire ELLUL, United Kingdom,
Frédéric HUBERT, Canada, Chen WANG, China, Abbas RAJABIFARD, Australia,
Mohsen KALANTARI, Australia, Davood SHOJAEI, Australia,
Behnam ATAZADEH, Australia, Peter VAN OOSTEROM, The Netherlands,
Marian DE VRIES, The Netherlands, and Shen YING, China

Key words: 3D Cadastral Visualization, Users, User Requirements, Usability, Modelling,
Presenting Information, 3D Environments, Interaction

SUMMARY

This paper reviews the opportunities offered by 3D visualization to improve the understanding
and the analysis of cadastre data. It first introduces the rationale of having 3D visualization
functionalities in the context of cadastre applications. Second, the publication outlines some
basic concepts in 3D visualization. This section specially adopts the visualization pipeline as a
driven classification schema to understand the steps leading to 3D visualization. It also includes
a brief review of current 3D standards and technologies. A summary of recent progress in 3D
cadastral visualization is then proposed, with use requirements, data and semiotics, and
platforms are highlighted as main actions performed in the development of 3D cadastre
visualization. This review is a first attempt at structuring and emphasising best practices in the
domain of 3D cadastre visualization and it provides an inventory of issues that still need to be
addressed. Finally, by providing a review on advances and trends in 3D visualization, the paper
initiates a discussion and a critical analysis on the benefit of applying these new developments
to the cadastral domain. This final section discusses enhancing 3D techniques such as dynamic
transparency and cutaway, 3D generalization, 3D visibility modelling, 3D annotation, 3D data
and web platforms, augmented reality, immersive virtual environments, 3D gaming, interaction
techniques and time.
1. INTRODUCTION

In general, 3D cadastre is perceived as helpful for overlapping situations when property units vertically stretch over or cover one part of the land parcel as condominium with co-ownership, infrastructure above and below the ground as utilities network like cables and pipes or tunnels and metro. Visualization is a fundamental component of any cadastral system, providing instant clarity about the boundary of the land or any kind of property unit, such as a co-ownership right, mining right or marine right that cannot be achieved via a textual description (Lemmens 2010; Williamson et al. 2010). A particular benefit of 3D cadastral systems is that they offer better visualization support for complex multi-level properties. Traditionally, cadastral visualization refers to the visualization of ownership boundaries on 2D maps and/or to descriptive data such as official measurements (length, azimuth, area, and owner’s name) or legal documents such as title, deed or mortgage. For example, figure 1 illustrates Quebec cadastre plan with an example of 2D plan and a vertical profile to represent the overlapping situation of condominium units. While interaction with a 2D map may be possible (via geo-technology), the vertical or other profiles are mainly fixed, pre-defined when the cadastral system is created, and can only partially represent the increasingly complex 3D ownership and rights situations that are arising from increasing urbanisation. Adding an interactive 3D visualization system, which enables the visualization of the third geometric dimension in a flexible manner, allows users to explore the complexity of the 3D situation and gives the sensation of depth may certainly overcome some of the issues of 2D techniques or fixed vertical profiles.

![Diagram of 2D Cadastre plan and vertical profile](image)

Figure 1. Example of vertical profile (Section A-A) used to represent the vertical dimension in the Quebec cadastre system (extracted from Infolot-MERN1)

---

1 Infolot is the online system for Land Register and Cadastre plan managed by MERN (Quebec Ministry of Energy and Natural resources).

Jacynthe Pouliot, Claire Ellul, Frédéric Hubert, Chen Wang, Abbas Rajabifard, Mohsen Kalantari, Davood Shojaei, Behnam Atazadeh, Peter van Oosterom, Marian de Vries, and Shen Ying

Chapter 5. Visualization and New Opportunities

FIG publication Best Practices 3D Cadastres - Extended version
Accordingly, having 3D cadastre visualization brings new opportunities including (Paasch et al. 2016; Rajabifard et al. 2014; Stoter 2004; Stoter and van Oosterom 2006):

- Improve understanding in 3D situations (3D spatial relationships, overlapping, conflict)
- Allow the visualization of an integrated 3D space of property units (above and below the ground)
- Increase information for the user, as additional data variables (height, Z, depth)
- Allow having access to 3D measures and slicing planes
- Provide a familiar view of the world (more realistic) and thus reduce misinterpretation
- Increase the level of interaction

Meanwhile, the third dimension for cadastral visualization results in new challenges as well (Shojaei 2014; van Oosterom 2013; Wang 2015):

- It may requires the user to have certain proficiencies of using 3D visualization interface in order to carry out cadastre related work properly.
- Standards, well-known mapping rules applied in 2D (e.g. selecting colour schema or symbols to represent the cadastre unit) may not convey the same meaning in 3D visualization.
- The occlusion (inability to see ‘behind’) in 3D visualization may be an obstacle for user perception of property units in a complex building. Some options:
  - Pre-select some 3D parcels for further exploration (using different levels of transparency), and others to provide context (making these more transparent, or even using wireframe display to distinguish them from the selected parcels),
  - Use exploding-views around selected parcels to allow users to examine in-details,
  - Allow the user to temporarily move objects to other locations (slide out a complete floor of building, and look inside), or
  - Slicing (horizontal, vertical, diagonal).
- Adding some reference topographic objects (buildings, roads, pipelines) and especially the earth surface, could be helpful but further complicates the visualization – the more features and complexity the more cognitive load, and the slower system performance. Note that topographic objects can be in vector representation (polyhedral surfaces) or smart point clouds, and the same is true for the earth surface.
- From a static 3D image it may not clear if a 3D parcel (related to legal space of pipeline or building) is above or below the earth surface (and how deep or how high). Interaction may help, but it may also be helpful to include other visualization clues; e.g. connect via vertical sticks to earth surface.
- With regards to scale variation (perspective effect in 3D), the traditional visual interactions or usages with the cadastre data may be more complex to perform like locating a specific unit, taking 3D measurement or applying spatial operators as calculating the distance between two property units. Also in the case of non-regular (grid-like) objects, it may be difficult to estimate actual size and distances (compared to 2D map with a homogenous scale).
- Displaying partly unbounded objects (open at bottom or top side), with their infinite boundary faces while still maintaining the user’s correct understanding of RRR, is very difficult, but is also a requirement within certain national cadastral systems.
• Visualizing 3D parcels and their temporal dimension (via animations or other techniques): either slowly changing parcels (continuously boundaries, e.g. near cost or river) or fast/discrete changes (split of 3D parcel).

• Visually distinguish the legal objects with the physical objects in 3D, especially under overlapping scenarios.

• Availability of 3D cadastral data, and related data processing suitable for 3D visualization.

The purpose of this publication is to promote opportunities offered by 3D cadastres, with a specific focus on the role of 3D visualization as a routine communication tool. This publication may also be seen as a road map to conduct research and development in 3D cadastre visualization. This manuscript is an extended version of the paper published at the 5th International FIG 3D Cadastre Workshop (Pouliot et al. 2016). It first proposes an introduction to theories and concepts in 3D visualization. Second, a summary of progress made in the last years in 3D cadastral visualization is highlighted. Finally, by providing a review on advances and trends in 3D visualization, the paper initiates a discussion and a critical analysis on the benefit of applying these new developments to cadastre domain.

2. 3D VISUALIZATION

This section of the document provides some background theory in order to supply further detail about the challenges arising from 3D visualization. In particular, the illustration of the visualization pipeline highlights the number of stages through which data must be processed before appearing on screen. This can in turn result in slower performance should the datasets to be processed be large or the hardware on which the visualization is taking place be lower in specification. How the data is stored - i.e. its representation on disk - is also important as format conversion may be required before the data can be passed into the visualization pipeline.

2.1 Theory and concepts

The main aim of visualization - whether 2D or 3D - is to take representations of the real world and display them to a user, most frequently on a 2D screen (laptop, desktop computer, tablet). Visualization is known as to geovisualization when geographic phenomena is under study as it is for cadastral information (ICA 2015; MacEachren and Kraak 2001). Geovisualization presents a number of fundamental challenges - firstly, the real world coordinates stored within the data (i.e. its coordinate reference system, which refers to an origin on the surface of the earth) need to be translated to screen coordinates, where the origin is at the top left of the screen. Similarly, the real world distances - miles, meters - need to be scaled down to screen distances. Additionally, the real 3D world needs to be transformed into a 2D representation on the screen - even if the data is 3D, the screen itself is most of the time 2D.

3D visualization brings the z dimension\(^2\) in the visual field as perception of depth (Dykes et al. 2005; Kraak 1988). There exist many approaches to produce depth perception as physiological cues like eye convergence, binocular disparity or motion parallax and psychological cues like retinal image size, perspective or shadows and technologies take advantage of them (Okoshi 1976). Formalizing the challenges outlined in the previous paragraph, the 3D visualization

\(^{2}\) Note that in this case the z dimension is distance away from the eyes.
pipeline, as shown in figure 2, can be used to better understand the general processes that lead to 3D visualization (Chi 2000; Haber and McNabb 1990; Voigt and Polowinski, 2011; Wang 2015; Ware 2012). To illustrate these categories of product, figure 3 shows simple example of each step applied for representing the same building in 3D.

As can be seen in figure 2, the first stage of the process is data acquisition, which follows traditional routes in Geomatics including LiDAR, laser scanning or photogrammetry. Modelling, a part of the data acquisition process, consists in selecting which objects from the reality or data will be included in the model and in designing geometric and semantic (attribute) features and data structures to be used in order to store the model; in other words the mathematical representation (Marsh 2004; Requicha 1980; Turner 1992). Filtering and data manipulation to enhance or adapt the data as interpolation may also be required in the process of modelling. Mapping indicates the selection and interaction of visual variables and symbols to be applied to the 3D model in order to produce suitable 3D Map. It relies on semiotics; the study of signs and symbols as part of meaningful communication (Ware 2012). Some key foundations in mapping are those proposed by cartographers (Bertin 1983; MacEachren 1995), the principles of Gestalt or Tufte (Koffka 1999; Tufte 1992) or the information visualization (Ware 2012). The exact list of visual variables may vary from one author to another but it usually includes colour (hue and saturation), size, shape, orientation, value and texture.

Figure 2. Visualization pipeline (adapted from Häberling et al. 2008; Semo et al. 2015; Terribilini 1999)
Graphic rendering follows on from mapping. Rendering is the process of generating images from the geometric models and data and it involves many processes as how light is applied (direction, shading, reflection), rasterization, varying the viewpoint, applying texture and transparency, adding effects as atmospheric condition, seasonal variance (Marsh 2004). Rendering may be non-photorealistic rendering or photorealistic which consequently enable more realistic views. Rendering techniques also allow the production of animated images, and thus create the notion of moving objects.

Figure 3. Example of outputs corresponding to each stage of the visualization pipeline in figure 2 (the model represents one campus building at Université Laval, Canada)

Figure 4. Examples of visual impact when modifying rendering and mapping parameters for 3D visualization (original 3D model built by group VRSB, Quebec City)
Figure 4 shows one floor of an apartment unit with stairs in the middle (no ceiling or floor are represented) for which rendering and mapping parameters are modified to illustrate the impact on the 3D visualization schema. As it can be seen, modifying mapping and rendering parameters may greatly affect our capacity to see, select or distinguish objects and thus taking decision based on it. Research into 3D visualization may occur in any of the phases of the visualization pipeline but typically, advances in visualization target the aspects of mapping and rendering. This paper does not address various aspects of the acquisition and modelling phases.

In addition to the concepts presented in figure 2, interaction, the dialogue between a human and a map mediated through a computing device (Roth 2011) also happens in the visualization process. Interaction may occur in changing the rendering parameters, focusing, arranging the symbols, etc. The ability to select, and therefore interact with, objects in a 3D environment is fundamental to the success of any 3D system (Bowman et al. 2012). The same applies to human related phenomena as perception (psychological and physiological facets), memories in vision, cognitive science since they all may impact the designing and the usage of visualization system (Miller 1956; Popelka and Dolez 2015; Ware and Plumlee 2005).

2.2 Representations and Standards for Storage and Data Exchange

In order to be used for visualization, the data captured at the start of the above pipeline must be stored in a format appropriate for downstream use. In this chapter, the term “D” refers to the geometric dimension and any 3D visualization will require having 3D geometric information, either as a Z coordinate, height or depth information attached to the geometric objects like vector geometry as point, line, surface or solid or volume element (voxel). It should be noted that while this Z information is required for any 3D visualization, solid objects or voxels are not a necessity. For example, a 3D model may be produced from the assembling of surfaces, often called boundary representation (Requicha, 1980). To illustrate this aspect, figure 5 presents 3D visualization of various categories of 3D data in the context of geological modelling (Bédard 2006). Pertinent standards in 3D visualization relate to both data format and grammar, implementation as with programming interfaces (API) and Web Feature Services. Many of them are proposed by ISO, OGC and W3C. For instance, CityGML acts as an open standardised GML³ data model for 3D city models and it proposes formalization for the model appearance (Gröger and Plümer 2012; Kolbe et al., 2009; OGC 2012) as well as its content (i.e. what features are modelled and to what accuracy). The Industry Foundation Classes (IFC), built and maintained by buildingSMART and adopted by ISO-16739, is a specification largely in used in the context of Building-information modelling (BIM). BIM-based approach provides significant benefits for visual communication of properties, particularly in complex urban built environments, with both IFC and CityGML focusing on ‘intelligent’ visualization – i.e. geometry with associated attributes (Atazadeh et al., 2017a,b). Other 3D formats that focus purely on geometry without specifying content include X3D, OBJ or KMZ produced by Google Earth. COLLADA (COLLAborative Design Activity) offers an interchange file format. WebGL is a Javascript API for 3D graphics on the web that provides an interface to the 3D graphics hardware on a machine (Paris 2012). It has emerged as the programming language for 3D graphics on the web, allowing a fully customized 3D software package to be developed (Evans et al. 2014). Finally, OGC is also working on 3D Portrayal Services that enable visualization (OGC 3D Portrayal 2012).

³ Geography Markup Language.
2.3 Generic Technology and Software

Two categories of 3D visualization device can commonly be identified - monoscopic 2D display screens and stereoscopic 3D devices that mimic the human vision thanks to 3D glasses or stereoscopes (sometime called True 3D visualization). On 2D screens, to reproduce the third dimension and give the illusion of depth, we usually apply projection techniques (Marsh 2004; Foley et al. 2003). The projected image could be calculated based on plane, sphere or cylinder form. Planimetric projection is the most common technique in use and two categories are typically found in computer software: perspective and parallel projections, with the perspective view dominating. Increasingly stereoscopic 3D visualization systems can be supplied on local platform, on Web or mobile devices. 3D visualization can also be performed with room-size immersive visualization (virtual reality) environment such as that provided by a 3D CAVE (Philips et al. 2015).

Software tools offering 3D visualization capabilities are abundant and can broadly be divided into graphics and game tools (e.g. Blender, Google Sketchup, Unity3D), computer assisted design (e.g. Bentley Microstation, Autodesk Autocad), geographic information systems (e.g. ESRI ArcGIS or CityEngine, QGis) or 3D Viewers (e.g. Adobe 3D PDF, Google Earth, ParaView). An additional categorisation divides the group of tools into those that offer data handling and modelling capabilities or 3D viewers, which are dedicated to 3D visualization (without editing options). An example of the latter is the well-known Adobe Acrobat format, which also proposes an option for 3D PDF file handling and offers minimal options to modify colour, transparency, projection and navigation. Google also proposes a 3D globe (Google Earth) which includes the visualization of 3D buildings for some cities in the world.
2.4 Comparing 2D and 3D Visualization

As it can be seen, addressing 3D visualization challenges requires knowledge and expertise from various disciplines and is a double-edged sword: it opens new possibilities, but also brings in new issues. Bleisch and Dykes (2015), Savage et al. (2004) or St-John et al. (2001) have presented comparative analysis in 2D and 3D visualization on how effectively and efficiently spatial data can be visually analysed in relation to specific tasks. While best practice for efficient mapping in 3D should be the same as it is in 2D, this is not the case - 3D visualization brings additional challenges when compared to 2D including (Elmqvist and Tsigas 2008; Hardisty 2003; Jobst and Döllner 2008; Shepherd 2008; Todd 2004; Tory et al, 2006):

- Occlusion and shadow management
- Orientation and position perception
- User interaction and experiences
- Photo Realistic option (more realistic views)
- Scale variation (perspective effect) and orientation dependency when measuring
- Depth perception

3. CADASTRAL SYSTEMS AND 3D VISUALIZATION

Although it is still an emerging field, some literature on 3D cadastre visualization exists and the topic was specifically addressed during the five 3D cadastre workshops (Fendel 2002; Pouliot 2011; Banut 2011; Pouliot and Wang 2014; Pouliot and Ellul 2014). On a total of 137 papers published during these workshops, and although many of them propose 3D pictures of cadastre, less than 15 papers focused on the 3D visualization aspects of cadastral data. The group discussion and material published during these 3D cadastre workshops and complementary literature review in scientific journals underpin this analysis. Three sections are proposed to synthesis the current activities in 3D cadastre visualization: user needs, data and semiotics/rendering aspects and visualization platforms.

3.1 Users and User Requirements

During the workshops, there were a number of discussions relating to users and their needs and researchers show an increasing understanding that users must be part of development and research activities for cadastral 3D visualization (Pouliot et al. 2014; Shojaei et al. 2013; Shojaei 2014; Stoter et al. 2013; Wang et al. 2016). A number of studies in this area are considered here, and overall the review shows that users are still eager to learn about the specific advantages of using 3D visualization.

Looking in more detail, the review indicates that cadastres’ users are mainly the user groups who would also make use of 2D cadastral systems - i.e. managers in government and municipal authorities responsible for the maintenance of the land administration system, as well as lawyers and notaries, land surveyors. The third dimension in cadastre system also appears to contribute of having (or increase) opportunities for new users of cadastre data, including architects, engineers, developers, real estate agents (Atazadeh et al. 2017). Architects and engineering for example already use 3D models for their own obligations and thus may be used to interacting with data in this manner; having 3D cadastre integrated or available is perceived as valuable. Another example to mention is marine areas, 3D visualization is offering many advantages and cadastre information (property/tenure) is part of it (Athanasiou et al. 2016).
Additionally, a questionnaire addressed to Quebec municipalities compared user expectation regarding cadastre data in 2D and in 3D and showed that overall, the cadastre related tasks are mainly the same in 2D and 3D (Boubehrezh 2014). In brief, interacting with 3D visualization of cadastral data appears helpful to (Boubehrezh 2014; Pouliot and Boubehrezh 2013; Pouliot et al. 2014; Shojaei 2014; Shojaei et al. 2013; Wang 2015):

- Identify and understand the 3D geometric boundary of the property units.
- Locate a specific 3D property unit.
- Look inside and outside the boundary of the 3D property unit.
- Find adjacent objects of a 3D legal object, both vertically and horizontally to identify affected RRRs (Right, Responsibility, and Restriction).
- Distinguish the boundaries of the 3D property units and the associated building parts.
- Distinguish the private and common parts in 3D co-ownership apartment buildings.
- Identify volumes that are to be merged or subdivided and thus facilitate the registration process.
- Trace utility networks and infrastructures (e.g. tunnel and bridges) and control the proximity with ownerships boundaries, and detect collisions.
- Visually check the spatial validity and data quality, e.g. volume is closed, no overlap between neighboring volumes, and no unwanted 3D gaps.
- Examine the property units in the context of their 3D surrounding environment.
- Associate public and building elements with 2D land parcels and compare their 3D geometry and spatial relationships.
- Perform 3D measurements such as calculating the surface area or volume of the property.
- Perform 3D geometric analysis such as 3D buffering, e.g. in the case of easement applications.
- Analyse 3D spatial relationships such as 3D overlapping analysis to identify RRR conflicts.
- Support other management systems including the co-visualization with land taxation, construction permits, urban planning, and land use regulation.

Table 1. Users and User Requirements of 3D cadastre system visualization

<table>
<thead>
<tr>
<th>User types</th>
<th>Requirements</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>- General Public</td>
<td>- Identify 3D property</td>
<td>- Steep learning curve</td>
</tr>
<tr>
<td>- Land Registry</td>
<td>- Understand the 3D geometry</td>
<td>- Presenting a solid value proposition</td>
</tr>
<tr>
<td>- Local Governments</td>
<td>- Locate and compare</td>
<td>- Barriers to legal and institutional adoption</td>
</tr>
<tr>
<td>- Land surveyors, Notaries, Land lawyers</td>
<td>- Measure and perform spatial analysis</td>
<td>- 3D visualization for other applications</td>
</tr>
<tr>
<td>- Architects, Engineering and Construction</td>
<td>- Control accuracy</td>
<td>- Multipurpose cadastral systems</td>
</tr>
<tr>
<td>- Land and urban planners</td>
<td>- Query geometry and attributes</td>
<td></td>
</tr>
<tr>
<td>- Property development</td>
<td>- Interact with</td>
<td></td>
</tr>
<tr>
<td>- Building Management</td>
<td>- Integrate with other applications</td>
<td></td>
</tr>
<tr>
<td>- Real Estate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jacynthe Pouliot, Claire Ellul, Frédéric Hubert, Chen Wang, Abbas Rajabifard, Mohsen Kalantari, Davood Shojaei, Behnam Atazadeh, Peter van Oosterom, Marian de Vries, and Shen Ying

Chapter 5. Visualization and New Opportunities
FIG publication Best Practices 3D Cadastres - Extended version
To those 3D cadastre interests, we may also add the traditional functionality available in 3D visualization systems, such as zoom in-out, pan, having tooltips, or mapping and rendering controls (as changing the colour, the type of symbol, the level of transparency, the shadow effect, etc).

In terms of usability, while advanced systems such as ESRI CityEngine do exist to facilitate 3D visualization, the steepness of the learning curve required to operate them perhaps makes them unsuitable for many of the user groups identified during the various workshops, both technical experts and members of the public (Ribeiro et al. 2014).

To summarise this section, the table 1 recaps the user types, user requirements and current gaps identified in literature in regards of 3D cadastre system visualization.

3.2 Information to Visualize and Semiotic/Rendering Aspects

Discussions on what to represent (information) and how (semiotic and rendering aspects, i.e. the best way to communicate information) in 3D visualization were also featured throughout during the 3D cadastre workshops.

3.2.1 What to Represent

The need for full 3D (solid) representation has been considered at all workshops but as yet most of the current cadastre systems are still proposing 2D plans and limited 3D information, and for backwards compatibility any visualization systems would also have to allow a good visualization of 2D data. The Land Administration Domain Model (ISO-TC 19152-LADM, 2012) provides an exhaustive list of cadastral data and modelling aspects to consider. For example, a digital cadastral mapping system in a multipurpose environment may include the following core components (IAAO, 2015):

- geodetic control network based in a mathematical coordinate projection
- cadastral parcel layer delineating the boundaries of real property in the jurisdiction
- other cadastral layers related directly to the parcel layer, such as subdivision, lot and block, tract, and grant boundaries
- unique identifier assigned to each property
- attributes (semantic) to describe the geometry of the property as length, area, volume or to describe the RRR attached to the property as deeds, titles, easements
- computer system that links spatial data and registration system.

Given the wide variety of geometric and semantic objects in a 3D cadastral system, it is no surprise that a number of different groupings of data exist. While Isikdag et al. (2015) distinguish between physical and virtual objects, Áien et al. (2013), Shojaei et al. (2013, 2014), Pouliot (2011) and Wang (2015) suggest that at least two types of spatial objects are necessary for cadastral 3D visualization as the boundaries of physical objects and the boundaries of legal objects (the term administrative boundary may also be used). Besides, Döner et al. (2011), Guerrero et al. (2013), Guo et al. (2013), Jeong et al. (2012), Pouliot et al. (2015), Shojaei et al. (2013) and Vandyshcheva et al. (2012) propose the visualization of underground objects as part of cadastre systems.

The debate also includes a core focus on the importance of representing not only legal but also physical representation of the world, the need to distinguish between private and publicly owned land, the need to formalize the spatial relationships along with the potential to link additional information—e.g., official documents—to the 3D geometry. Mapping legal
boundaries that do not physically exist poses a certain number of issues, and some solutions have emerged from research (Aien et al. 2013; Griffith-Charles et al. 2016; Shojaei et al. 2014). Most of these propositions suggest the visualization of orthophotography and legal boundaries draped on a 3D globe. As shown in figure 6 that presents the 3D visualization of bridge and legal boundaries of Shenzhen Bay port, the legal space is enlarged and distinct from the physical space of the construction (Guo et al. 2011). Only through the 3D visualization can we clarify the difference of these spaces.

Figure 6. Shenzhen Bay Port 3D visualization of bridge and legal boundaries (source Guo et al. 2011)

A legal boundary defined by the interior surface of walls

A legal boundary not defined by the physical structure

Figure 7. BIM distinction between legal and physical boundaries (built from Atazadeh et al. 2017)

Figure 7 shows another example that allows the visualization of inside building (Atazadeh et al. 2017). It was shown that the BIM environment can potentially be utilized to provide a more communicable method of representing a wide range of legal and physical boundaries defined in the state of Victoria in Australia. However, traditional BIM does not yet provide support for defining 3D legal objects (Atazadeh et al. 2017; Shojaei et al. 2014). Visualizing invisible or virtual objects like legal boundaries may be examined from the same research standpoint of underground objects, the visualization of which was, in turn, identified as a shortcoming of existing systems. Figure 8 shows 2D traditional view of superimposed buildings, cadastre parcels and underground networks, while the zoom offers a 3D view of the same objects.

Figure 8. Superimposed buildings, cadastre parcels and underground networks (built from Atazadeh et al. 2017)
Additionally, having access, and thus being able to visualize descriptive data as an attribute is also important for cadastral applications. Figure 9 from Atazadeh et al. (2016) shows an example of managing legal information associated with a private property in the 3D digital data environment of BIM.

**Figure 8.** 3D Zoom of overlapping buildings, land parcels and underground networks

**Figure 9.** Representing and managing the legal (land administration) information in the BIM environment. On the left, a list of attributes of the private ownership space (built from Atazadeh et al. 2016)
One important outcome of the survey conducted by Pouliot and Boubehrezh (2013) is that users require 3D annotation (official measurements) marked on the 3D model. Wang (2015) and Pouliot et al. (2014) tested the suitability of having 3D cadastre annotation in face-to-face interview with notaries. They assess the 3D position of annotation (inside, outside, next to) for marking the volume of the property unit (figure 10 shows two examples) located in an apartment. Positioning the annotation outside the volume is identified by the notaries as not helpful to achieve this task. Finally, some authors argue that, to manage and consequently visualize information in a cadastral system, time (4D) should be part of the explicit data (Döner and Biyik 2013; Siejka et al. 2013; van Oosterom and Stoter 2010). Seifert et al. (2016) for example argue for the development of multidimensional cadastre system that includes information related to energy, noise protection, urban planning, disaster management and time-related cadastral information such as monitoring the development of cities over time, statistic of changes of land user/land cover or historical archiving. Having a 3D visualization system that allows integrated views of multiple sources of data, including cadastre, and animation scenarios appear as a major challenge.

Annotation “Vol:4” placed inside the property unit

![Annotation “Vol:4” placed inside the property unit](image1)

Annotation “Vol:4” placed outside the property unit

![Annotation “Vol:4” placed outside the property unit](image2)

Figure 10 Varying the position of 3D annotation associated to the property unit 5 220 398 (original 3D model built by group VRSB, Quebec City)

3.2.2 Semiotics and Rendering

To date, very few researchers have addressed cadastre symbolization from a point of view of the semiotics of graphics. Wang (2015) and Pouliot et al. (2014) in their experiments with 3D cadastre visualization, evaluate the suitability of visual variables (colour hue, colour saturation,
position, value, texture and transparency) against six notarial tasks. In their results, with or without transparency, the colour (hue) is among the preferred visual solution compared to value and texture for selection purpose. Colour (saturation) performed well to allow the association of lots into two groups. Additionally, it is well recognized that transparency is a central technique in 3D visualization system and the same apply to 3D cadastre visualization. Ying et al. (2012) offer a good example in using transparency to depict the boundary difference between cadastral spaces and buildings spaces (figure 11).

![Figure 11. Using transparency to enhance the visualization of 3D cadastre and building spaces (source Ying et al. 2012)](image)

Furthermore, Wang et al. (2016) explore transparency in 3D cadastral visualization, demonstrating that this is useful to help users delimit property units (administrative boundaries) by using their physical counterparts (e.g., walls). Figure 12 illustrates two examples of transparency levels tested during the experiment. They found that, in general, using three different transparency levels is preferable and efficient solution to help users demarcate property units with their physical counterparts. Applying very high transparency to simple legal boundaries as compared to simple physical boundaries improves user certainty in the decision process. Using higher transparency on the physical boundary (wall) is more effective in communicating to users the concept of ownership.

---

4) See the geometric limits of the 3D lots, 2) Characterize a specific 3D lot according to its official information, 3) Locate a specific 3D lot inside the building, 4) Distinguish the limits of the 3D lot and the associated building, 5) Distinguish the private and common parts of the condo, 6) Understand the neighbouring relationship between 3D lot and its surrounding lots.
High transparency used to illustrate the wall

Low transparency used to illustrate the wall

Figure 12. Testing transparency levels for ownership establishment. Participants had to decide whether this wall part belongs to the private property unit or not. The red arrow points to a private property unit and the green arrow points to a wall part (source Wang 2015)

Other researchers demonstrate highlighting techniques such as colour rectangles, detaching floors or slicing to improve the communication level (Pouliot et al. 2014; Shojaei 2014; Vandysheva et al. 2012). For example, Ying et al. (2016) develop discretization and distortion of the set the property units (identified as coherent set) and depicted their relative spatial locations and spatial relationships (figure 13). An orthogonal function is used to discretize the coherent set of units and then displacement equations are applied while keeping the focus on one specific unit (the red one in figure 13). This distortion transformation and visualization effectively draw the inside property unit that cannot be visible in reality, only with the outer surfaces and appearances. Figure 14 illustrates another example of the use of slicing and detaching floors to get an inside view of the units.

The coherent set

The same set with distortion and focus

Figure 13. Distortion visualization of 3D property units (source Ying et al. 2016)
Figure 14. Highlighting techniques applied to the visualization of three floors of an apartment (original 3D model built by group VRSB, Quebec City)

Table 2 summarizes the current trends in 3D cadastre visualization regarding information and semiotic/rendering aspects and current gaps identified.

<table>
<thead>
<tr>
<th>Cadastral information to visualize</th>
<th>Semiotics and Rendering</th>
<th>Challenges</th>
</tr>
</thead>
</table>
| - Physical, legal and virtual objects/ spaces/boundaries as:  
  • Annotations and attributes  
  • Descriptive or legal documentation  
  • Private and common parts  
  • Private and publicly owned land  
  - Spatial relationships  
  - Time and “chain” of property right | - Altering and suitability of visual variables  
- Applying texture and transparency  
- Colour rectangle  
- Slicing, cross-sections  
- Discretization and distortion | - Legal boundary not visible  
- Embedding within the legal decision making process  
- Availability of 3D cadastre data  
- Geometric complexity of apartment  
- Temporal data visualization |
3.3 Visualization Platforms

Alongside the generic platforms identified in Section 2.3 above, emerging web-based technology as websites and web services were a clear focus in the review, which identified many prototypes built specifically for 3D cadastral systems that include web-based and desktop systems for which. Open-source solutions were identified as having particular relevance.

In the context of web-based systems, Shojaei et al. (2014) establish a web-based 3D cadastral visualization system with a comprehensive review of functional visualization requirements and the applicability of 3D visualization platforms. They also developed a 3D visualization system based on Google Earth for 3D ePlan/LandXML data to be used in overlapping property situations (Shojaei et al. 2012). Figure 15 shows some examples of the interface proposed by the prototype of 3D ePlan developed by Land Use Victorian Government. It is used to illustrate how the legal and physical objects of a building subdivision plan can be stored, visualised and queried in a 3D digital system (Olfat et al. 2016).

Aditya et al. (2011), for the jurisdiction of Indonesia, develop two 3D cadastre web map prototypes based on KML with Google Earth and X3D with ArcGIS online, respectively. Stoter et al. (2013) explain how in Netherlands 3D cadastre maybe applicable and in 2016 (Stoter et al. 2016); they present a first attempts to accomplish 3D cadastral registration within the existing cadastral and legal framework.

Additional visualizations were based on a desktop version of Google Earth. In China, Guo et al (2013) developed a 3D cadastre for the administration of urban land use for the city of Shenzhen. In Korea, Jeong et al. (2011) explored the future settle of 3D cadastre. Vandysheva

Figure 15. Land use Victoria prototype for online 3D ePlan (extracted from https://www.spear.land.vic.gov.au/spear/pages/eplan/3d-digital-cadastre/land-victoria-3d-eplan-prototype.shtml)
et al. (2012) presented a 3D cadastre prototype applicable in the Russian Federation. Vucic et al. (2016) assessed the possibility for upgrading Croatian cadastre to 3D. In the context of Spain, Oliveres Garcia et al. (2011) explained how to use KML and Google Earth to visualize a volumetric representation of property units in condominiums. As illustrated in figure 16, Ribeiro et al. (2014) tested ESRI CityEngine for use in Portugal 3D Cadastre visualization. On the other hand, Shojaei (2014) exploited a stereo approach using 3D anaglyph glasses to present ownership rights. In this technique, two different images are presented into right and left eyes to give 3D perception (figure 17).

Figure 16. Generating 3D Cadastral Data using ESRI City Engine (source Ribeiro et al 2014)

A stereo representation of ownership rights

Presenting the prototype to the industry

Figure 17. A stereo representation of ownership rights based on anaglyph approach (source Shojaei 2014)
As noted in Section 3.1, the ability to select, and therefore interact with, objects in a 3D environment is fundamental to the success of any 3D system (Bowman et al. 2012). Visual highlighting techniques previously discussed are helpful to perform such interaction with the 3D model. In a Russian prototype (Vandysheva et al. 2012), users could drag out the 3D model of a floor together with the 2D plan of the entire building in order to overcome issues related to occlusion. In order to look inside a building, it was also possible that user interaction could be applied to temporary drag a floor with 3D parcels outside the building (figure 18). The benefit of interaction is that user is controlling this temporary distortion and therefore is not given an incorrect mental picture (and human intelligence is used to find a suitable location when dragging a floor outside the building).

Figure 18 Floor_01 dragged outside the building. Note the tooltip which contains the identifier of the object during move-over (apartment P7). Source: (Vandysheva et al. 2012)

User interaction could also be used to switch on or off certain visualization clues. In a static image, it might be quite difficult to estimate the relative depth or height of objects. Toggling on/off vertical height/depth cue stick may help the user to get proper impression (in addition to moving, rotating, etc.); see figure 19.
Additionally, some visualization prototypes enable user navigation, object search and attribute query (i.e., a step beyond selection); these prototypes include one from Korea (Jeong et al. 2011) and a visualization prototype built on CityEngine (Ribeiro et al. 2014). Going one step further, Navratil and Fogliaroni (2014) proposed a new model for 3D visibility analysis that integrates 3D Cadastre data in the context of urban planning.

To summarise this section, table 3 recapitulates the platforms, their functions and current gaps identified in literature.

Table 3. 3D cadastre platforms and their functions in the context of cadastre visualization

<table>
<thead>
<tr>
<th>Platforms</th>
<th>Functions</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web/desktop</td>
<td>Zoom in/out</td>
<td>- Legal and institutional adoption</td>
</tr>
<tr>
<td>- Open/proprietary</td>
<td>Pan</td>
<td>- Interoperability of software</td>
</tr>
<tr>
<td>- Fully functional (editing)</td>
<td>Changing the colour, the type of symbol, the</td>
<td>- Absence of mobile devices</td>
</tr>
<tr>
<td>- or basic visualization only</td>
<td>level of transparency, the shadow effect, etc</td>
<td>- Interface for field surveys (not 3D)</td>
</tr>
<tr>
<td>- Virtual and augmented reality</td>
<td>Spatial analysis</td>
<td>- Gap between 3D developers/users (e.g. gaming) and cadastral</td>
</tr>
<tr>
<td>- Gaming platforms</td>
<td>Navigation</td>
<td>system developers/users</td>
</tr>
<tr>
<td></td>
<td>Spatial Search</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attribute query</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stereo presentation</td>
<td></td>
</tr>
</tbody>
</table>
4. EMERGING TRENDS IN 3D VISUALIZATION

This section identifies a number of emerging research or trends in 3D visualization that may benefit 3D cadastral visualization. To facilitate the comparison, the topics are presented with the same groups as section 3.

4.1 Users and User Requirements
As noted in section 3.1, current research in 3D cadastre visualization does not include much user analysis and those assessments are not really initiated by standardized terminologies and approached. To this end, ISO, IEC and IEEE standardization on data quality assessment should be examined in more detail. For instance, the distinct notions of usefulness, usability and acceptability are required to conduct reliable investigations that integrate end-users. Usefulness/usability issues cover solutions which intended users can understand and find useful for decision-making. In this context, usability refers to the technical aspects of a visualization (Bleisch 2012; Landauer 1995), whereas usefulness addresses whether it does what the user needs. The usability of a solution may not guarantee its usefulness, and there are possibilities that a usable visualization tool would be totally useless in real life (Greenberg and Buxton, 2008). Usability studies (part of research into human-computer interaction)—such as heuristic evaluation, cognitive walk-through (Neilsen 1993) and studies using user testing and cooperative evaluation (Jacobsen 1999)—are also fundamental.

A starting point to understand the usefulness of 3D visualization may be appraised from the geovisualization cube of MacEachren & Kraak (2001). They propose three axes to assess geovisualization: 1) user or audience (public to expert), 2) interaction (low to high) and 3) information content (unknown to known). From the point of view of the cadastre, usefulness may be considered along the concept of multipurpose cadastre (Dale and McLaughlin 1999; Williamson et al. 2008) or along suitability for the purpose (Enemark et al. 2014). Integrating the third dimension in cadastre is a possible opportunity to involve new users or develop new markets as it forces current users and practitioners to re-examine their own mission or professional practice. Climate change, sustainable development, urban planning are important societal preoccupations, which now integrate 3D models of the Earth; land information should be part of it. Capturing user requirements for on-demand mapping, dealing with different communities of users and establishing various user profiles would be benefit (Gould and Chaudhry 2012). Personalising visualization of the content of maps (2D/3D) according to the profile and location of final users would be useful in a cadastral context (Mac Aoidh et al. 2009). For a notary, an expert or a citizen, a same object (a building for example) could be represented differently following a simplified/complex geometry, other graphics (visual variables), and/or semantic information. Acceptability comprises collective, political and legal factors of acceptance—does the solution conform to common practice, approved standards or laws. Applying user-centred design (which places the user at the focal point of any design process) in 3D Cadastre visualization research will help the designer to understand user requirements. Additionally, it prepares the user for the new visualization solutions from the very first stage of the work, and provides the benefit that working closely with the users will give developers of 3D cadastral systems an immediate understanding of the feasibility of their suggested approaches. For example, a desktop-based system may pose technical issues in an organization with limited IT expertise.
As mentioned, an additional important factor to consider is the learning curve for users moving into a 3D environment. Preliminary tests have been done (Lu et al. 2016) comparing interaction in 2D and 3D GIS using ESRI’s ArcMap and ArcScene for seven users (Nielsen 2000 notes that five users are sufficient for usability tests). Their results show that while all seven users were able to find a given location and measure a distance, they struggled with more complex tasks in 3D. In particular, only one of the users managed to fly through a route, and only five managed to measure the height of a building. Similar experiments are required for cadastre users.

Semantics-driven visualization is another possible direction to explore to guide users through 3D visualization parametrization since it would result in adding formalized knowledge of a certain domain, user’s experience, interaction and learning aspects to support visual task (Nazemi et al. 2015). Semantics-driven visualization would allow adding formalized knowledge of a certain domain, user’s experience, interaction and learning aspects to support visual task (Klima et al. 2004; Mitrovic et al. 2005; Posada-Velásque 2006). Attributes and information from data, users and resources can then enrich visualization applications to decide how to represent data effectively according to defined rules. Smart applications can think and choose appropriate methods of visualization for a specific user for specific tasks. For example, if the user profile specifies the type of user and tasks (semantic information), needs and resources (e.g. device, internet bandwidth, and processor speed) might be specified for the application. Ideally, the application can automatically provide a customised visualization for the specified user according to semantic information acquired from users (Shojaei, 2014). For example, Neuville et al. (2017) is proposing a decision support tool that facilitates the production of an efficient 3D visualization. They propose a set of predicates and truth conditions between two collections of entities: on one hand the static retinal variables (hue, size, shape…) and 3D environment parameters (directional lighting, shadow, haze…) and on the other hand their effect(s) in achieving a specific visual task. Their approach could be interestingly applied to cadastre context.

Ethical issues may also be discussed when 3D visualization systems are exploited since the visualization pattern may benefit to promote (or not) one aspect or hide another. Monmonier demonstrated long time ago (1996) how it is easy to lie with maps and in 3D visualization, this issue is even more prevailing. For instance, 3D model visualization can appear so similar to the reality, that user may be confused; this is especially true when photorealistic rendering is applied. The 3D Ethics Charter is one of the initiative that we may highlight here (Pouliot et al. 2010) or the Statement of Values for the Geomatics professional community (Pouliot et al. 2013). Sheppard also conducted several studies on this topic, promoting a code of ethics for 3D landscape visualization (Sheppard 2000; Sheppard and Cizek 2009). This issue of 3D ethics in the context of 3D cadastre application has not been examined yet.

4.2 Information to Visualize and Semiotic/Rendering Aspects
As noted above, there is a need to model a wide range of complex real-world and virtual objects in any 3D Cadastral system. This contrasts sharply with the need to present a simple, understandable visualization to the end-users of any system. A number of research areas in GIS and beyond can assist with this challenge. Although this publication does not address the topic of data modelling, how data are organised and modelled may influence the visualization design.

Some mapping and modelling practices like data generalization, multiple representations or occlusion management are techniques that may be investigated to improve data communication and thus visualization, and provide the additional benefit of a more nuanced understanding of user needs for 3D cadastral visualization, recognizing that a ‘one size fits all’ approach may not be appropriate. Correspondingly, metadata and data cataloguing also need to be refined in the context of 3D model (Zamyadi et al. 2014), the same apply to 3D cadastre.

4.2.1 Level of Detail
Research into 3D generalization has been carried out by several authors, including Fan et al. (2009), Glander and Döllner (2009), Mao et al. (2011) and Meng and Forberg (2007). As with 2D generalization, a key purpose here is to provide a visualization that suit visual tasks for a specific user, emphasizing key features and removing or aggregating others (Robinson et al. 1995). The question of level of detail (LoD) as proposed by CityGML (Kolbe 2009) and formalization of LoD (Biljecki et al. 2014) is an interesting concept to examine. In current cadastre system, legal objects are most of the time visualized individually and are displayed as small as necessary to represent RRRs (van Oosterom et al. 2011). Unlike physical objects, legal objects cannot be generalised in cadastres. For example, at a city level, it would be misleading to generalise and merge legal objects (e.g. lots in a high rise) and visualise them in a single volume. Therefore, the traditional concept of LoD is not applicable to legal concepts (Shojaei, 2014), unless it is used to go beyond 3D building visualization and integrates legal, non-visible objects or boundaries, or their corresponding RRR as a specific LoD. The work of Gruber et al. (2014), applying LoD for the German Cadastre, is a first step in this direction. A similar argument might apply to traditional approaches to generalisation - for example, can RRR be aggregated conceptually in a similar way to individual buildings being aggregated into a single block.

4.2.2 Enhancing techniques
3D generalization and LoD are generally static—i.e., the process is run once. However, having multiple representations of the same object can also be adapted to overcome occlusion issues in a 3D environment—i.e., objects that prevent a user from visualizing or selecting an object of interest. Enhancement techniques such as altering the viewing direction, and depth clues may increase the spatial awareness of the viewer (Zhang et al. 2016). Elmqvist and Tsigas (2008) presented an interesting and detailed review of 50 techniques in this area, including multiple viewports and virtual X-ray tools. For example they proposed an occlusion management called dynamic transparency that improves object discovery, and they applied it for 3D games, see figure 20.
Cutaways and cross-sections (which are traditionally used in 2D cadastral mapping) also provide a direct technique to remove visual occlusion. Nevertheless, cross-section or cutaway illustrations are challenging to compute in keeping consistent material and surface textures in a vector boundary modelling. Li, Duan et al. (2015) explored semantic volume texture (SVT) model to overcome some of these computational challenges. They proposed an approach that rasterize the 3D model, while embedding pre-extracted semantic hierarchy and volume texture and rendering. Figure 21 illustrates one of their results. Voxel modelling and successive visualization have not yet been explored in cadastre application.

Fogliaroni and Clementini (2014) and Billen and Clementini (2006) applied the multiple viewport technique by splitting the 3D space in order to model the visibility between 3D objects. They proposed a new 3D visibility reference framework based on qualitative spatial representation, more reliable to human visual perception. Figure 22 shows an example of this framework. This technique may be suitability applied in the context of modelling and then revealing servitude of view while the concept of qualitative positioning (on left, above, etc.) better correspond to the user perception of how restrictions affect its own land usage.
4.2.3 Annotation and Labelling
3D annotation, as previously noted as of main importance for cadastre users, needs to be taken in consideration in the visualization process since it is a critical issue for spatial orientation in 3D model. For example, Vaaraniemi et al. (2012) propose to enhance the visibility of annotation (labels) in 3D navigation maps and they tested various techniques with users. Figure 23 shows
two examples of approaches used to preserve the visibility of textual labels. Their approach looks much appropriate for cadastre application.

Focusing on the mixed geometry/attribute environment that reflects a 3D cadastral situation, Jankowski and Decker (2012) presented a comparison of two modes of interacting with 3D data on the web, where hypertext and 3D graphics are mixed (see figure 24). They experimented with labelling and annotating 3D interactive illustrations in three settings: annotations attached to objects using translucent shapes, located within the objects’ shadows, or with the areas showing the 3D model and text being separated. They conclude that the last method is best for long text, since users can explore the scene without text interrupting the view. The first setting is best for short texts, a result directly transferrable to 3D cadastral interfaces.
In addition to this, an investigation into other visual enhancement techniques in the 3D cadastral environment should be realized in order to take advantage of work done by Métral et al. (2012) and Shojaei et al. (2013) on using text for annotation, work done by Trapp et al. (2011) who added a new arrow symbol above an original symbol to attract the viewer’s attention, and work done by Turkay et al. (2014) who present the concept of an attribute signature to help the visual analysis of geographic datasets.

4.3 Visualization Platforms

The use of 3D environments and interaction topics mentioned in Section 2.2 above—web-based, mobile-based, virtual reality, augmented reality or full immersion—will in turn impact the ways in which the user can interact with the environment and objects within it, and 3D cadastral research should also be expanded to include research in the broader field of computer science and, in particular, 3D gaming.

4.3.1 3D Data Modes of Display

Approaches here range from those available on a standard desktop computer or mobile device such as a tablet (no immersion in the environment) through augmented reality (partial immersion) to those requiring very specialized hardware (full immersion), which can in turn be very expensive.

Web-Based 3D Visualization

In addition to the 3D-cadastral prototypes mentioned in Section 2, other researchers are experimenting with WebGL or OGC Portayal. An example of this can be found in Milner et al. (2014), who presented a 3D-enabled web GIS with full selection and editing functionality. Resch et al. (2014) used WebGL to build web-based 3D+time visualization application for
marine geo-data and Chaturvedi et al. (2015) presented a web-based virtual globe able to integrate and display very large semantic 3D city models, developed with Cesium JS, an open-source JavaScript library for 3D globes and maps. For cultural heritage dissemination purpose, Koeva et al. (2017) proposed a web-based portal that use spherical panoramas, videos and sounds. Ferraz and Santos (2010) combined Spatial OLAP\textsuperscript{6} tools with virtual globes to facilitate the discovery and exploration of multidimensional data (i.e., thematic, temporal and spatial data) on 3D maps. Devaux et al. (2012) conceived a web framework, named iTowns\textsuperscript{7}, to visualize 3D geospatial data, Lidar data and street view images. iTowns is based on WebGL and offers also tools for 3D precise measurements.

**Augmented Reality**

Rooted in the concepts of spatially enabled smart cities (Coleman et al. 2016), augmented reality (AR) is certainly one promising field to explore for cadastre application (Hugues et al. 2011). Figure 25 illustrates a number of possible applications of AR devices to land management purposes. Exploiting AR also results in new challenges to be considered (van Krevelen and Poelman (2010). For example, Duinat and Daniel (2013) and Schall et al. (2013) explored the applicability of AR devices for interactive visualization of underground infrastructure. Pierdicca et al. (2016) tested AR devices in the context of natural resource maintenance while Lee et al. (2012) used it for city visualization. Figure 26 shows the example of AR system applied to the 4D visualization of data uncertainties (olde Scholtenhuis et al. 2017). In this last example, the level of uncertainties, categorised into three classes (standard, estimated, surveyed location), is used to generate variable cylinder shapes. Integrating the visualization of uncertainties information also looks appealing in the context of cadastre application.

---

\textsuperscript{6} OnLine Analytical Processing.

\textsuperscript{7} http://www.itowns-project.org/
Check apartment subdivision

Source Dyer 2015

Confirm easement location

Source http://geospatial.blogs.com/geospatial/augmented-reality/

Locate underground networks

Source Rajabifard 2015 and Grant 2012

Inform about occupancy


Figure 25. Examples of possible application of augmented reality devices to land management purposes
Visitation and New Opportunities

FIG publi

Figure 26 Augmented reality and fuzzy concepts to enable the 3D-representation and visualization of uncertainties for underground utility data (Olde Scholtenhuis et al. 2017)

Immersive Virtual Environments

Geovisualization laboratories are emerging and they give access to a variety of tools and instruments dedicated to interactive viewing of geospatial data. Some interactive, physical and virtual environments (VE) could be useful in the context of 3D cadastre learning. Research has emerged in the past ten years: displaying 3D virtual environments on walls (CAVE2) and interacting by using the CAVE2 wand controller, the prototype CAVE Sphere device or tablet devices (Febretti et al. 2013), exploiting BIM data in virtual reality environment for construction and architecture in the Callisto-SARI project (Genty 2015), interacting with the Google Earth virtual globe by using the Microsoft Kinect (Boulos et al. 2011), enhancing interactive learnings with students about flood risks by using a 3D CAVE (Philips et al. 2015). Figure 27 presents the example of Casala Centre (Netwell/CASALA, Dundalk Institute of Technology) to demonstrate the 3D CAVE. It shows a virtual apartment in a complete immersive environment modeled from data collected by 3000 sensors positioned in the real apartment (in using 3D glasses, people can freely interact with the 3D model). There is also a dearth of research regarding stereoscopic and immersive virtual reality for visualizing 3D parcels (Buchroithner and Knust 2013).

---

8 https://www.dkit.ie/research/research-centres-groups/ict-health-ageing/netwellcasala
Figure 27. Example of 3D Cave for an apartment (source www.casala.ie)

Other immersive and interactive works concern holographic technologies including Zebra Imaging⁹, Musion (http://musion.com), Leia 3D¹⁰ and Holusion¹¹. In a geovisualization context, a first holographic map was produced in 2011 by DARPA in the “Urban Photonic Sandtable Display” program in collaboration with Zebra Imaging¹² (see figure 28). Combining these novel holographic technologies with 3D cadastral objects could be considered as an attractive means for private or public institutions to promote cadastral systems, although the expense means they are beyond the reach of the everyday user. It could accelerate the decision making process in focusing on the message rather the medium.

Figure 28 ZScape 3D holographic viewing (source www.zebraimaging.com)

---

9 www.zebraimaging.com
10 www.leia3d.com
11 http://holusion.com/fr
12 www.nextbigfuture.com/2011/03/darpa-has-3d-holographic-display.html

Jacynthe Pouliot, Claire Ellul, Frédéric Hubert, Chen Wang, Abbas Rajabifard, Mohsen Kalantari, Davood Shojaei, Behnam Atazadeh, Peter van Oosterom, Marian de Vries, and Shen Ying

Chapter 5. Visualization and New Opportunities
FIG publication Best Practices 3D Cadastres - Extended version
3D Gaming

Users of 3D cadastre systems are for the most of them beginners when working in 3D environments. For this reason research carried out in 3D Gaming may also be beneficial since it may provide additional learning from both technical and user points of view. In particular the concept of Serious Games appears relevant here – defined as games which encourage active and critical learning through a gaming environment, where users enjoy pursuing challenging tasks, and where competition may also be involved (Kosmadoudi et al. 2013). 3D examples include games used to teach users how to use complex CAD systems, how to navigate a fork-lift truck, and research into collaborative engineering design. Minecraft offers to user a new opportunity to build a virtual environment to help students to reproduce and understand some phenomena (Formosa 2014; Short 2012). In the same way, simulated LEGO blocks (as cube forms) could be assembled to build virtual scene from the real world. Yuan and Schneider (2010) built an indoor scene with LEGO cubes in a context of 3D route planning.

4.3.2 Interaction – Moving Around in the 3D World

Traditionally, interaction with 3D Cadastral Systems takes place via a screen and a mouse. This is in great part due to the wide availability and low cost of these tools (Ortega et al. 2016). These options, however, have the disadvantage of not providing easy access to a full 6 Degrees of Freedom—(3 * rotations and 3* translations), required for 3D interaction. A number of tools commonly associated with 3D gaming, as well as emerging interaction options, are perhaps worth considering. These include (from Ortega et al., 2016): keyboards and mice, controllers such as the Nintendo Wii, joysticks, inertial sensing devices (e.g., a combination of gyroscopes and accelerometers on a smartphone) and head-mounted displays – such as the Oculus Rift or Microsoft Hololens. For instance, SketchUp now offers a viewer for Microsoft Hololens that enables mixed-reality visualization as part of collaboration scenarios (“what if” design scenarios).

Related usability research may guide the choice of interaction mode for 3D cadastral systems. For example, Farhadi-Niaki et al. (2013) compare static and dynamic gesture interaction, as well as haptic options (a haptic mouse) as interfaces to 3D games, concluding that static gestures performed better in terms of time and precision and naturalness of the interaction while the 3D mouse was easier to use, but caused more fatigue. Additionally, there is extensive usability research examining specific tasks that users perform within the 3D environment, including object selection, retrieving information about objects, capturing new data and moving around the environment. In a study that is perhaps close to the needs of 3D cadastral users, Cashion et al. (2012) looked at object selection in the context of dynamic, dense environments, concluding that a ray-casting approach—such as that provided by the Wii remote—is best for static, low-density environments. For high-density scenes, however, an ‘expanded’ approach—where the user is offered a grid of possible targets once the ray has been cast—is more efficient (Teather and Stuerzlinger 2013).

Jankowski and Decker (2012) presented a comparison of two modes of interacting with 3D data on the web. They also described research into two interaction modes for “travel”—movement around a 3D VE—a simple mode, where the user can click on hyperlinks in the 3D view and go to fixed viewpoints; and an advanced mode, where the user is free to explore, concluding that the opportunity to swap between modes as the user requires provides the most efficient interface.
Interactive lens for visualization is a novel tool allowing to view other visual data through a spherical surface above a basic visualization like a map (Tominski et al. 2014). This interactive tool could be useful in a context of 3D cadastre in order to interact with 3D objects for viewing various representations and more details of these same objects. Magic lenses based on additional physical supports like a paper with a tabletop (Spindler and Dashselt 2009) or with tangibles devices in virtual 3D environment (Brown and Hua 2006) already exists.

Finally, adapting interfaces and interactions to the context of usage according to user profiles, their environment (physical or social) and platform (hardware or software), as proposed in the field called plasticity of user interfaces, may also be of interest for 3D cadastre applications, with the work on 3D plasticity by Lacoche et al. (2015). An extensive review was first published in 3D User Interfaces: Theory and Practice (Bowman et al. 2004), and more recently in Ortega et al. (2016).

4.4 Beyond 3D Visualization
The vast majority of the papers discussed visualization from the point of view of “geo”visualization (geometric representation). To conclude this review, we though interesting to open a short parenthesis on time visualization and visual analytics that may help us to enlarge the typical notion of 3D digital representation of geospatial (cadastre) data.

4.4.1 Integrating Time
Adapting time-based 2D visualization and interaction could be of interest for suggesting new time-based 3D cadastral data. The space-time cube is a well-known application combining time series as the third dimension with 3D maps (Hägerstand 1970; Kwan and Lee 2004). This 3D environment is also mainly used to visualize and analyse temporal information in the space for movement data (Kraak 2003). Displaying a temporal division of parcels can be easily achieved (van Oosteroom and Stoter 2010) and time-based interactions in such a space-time cube have already been studied by Bach et al. (2014).

Ringmap is another method to explore to interact with data in order to visualize time series. For example, Zhao et al. (2008) present different representations of time series in a geovisualization point of view with a specific focus on ringmaps. Wu et al. (2015) also integrate ringmaps in their analysis of Dutch temperature data. In the context of real estate transaction monitoring or tracking, such representation would be helpful to discover spatio-temporal patterns. For interactions, temporal navigation methods by direct manipulation are designed for 2D and 3D environments (Kondo and Collins 2014; Wolter et al. 2009).

4.4.2 Integrating Visual Analytics and Big Data
Visual analytics offer techniques and tools that synthesize information and derive insight from massive and dynamic data by providing interactive visual interfaces (Keim et al. 2008). It proposes a combination of graphs, dashboards, statistical views, etc. For instance, managing and thus visualize a huge volume of data has recently emerged the research field or “Big Data”. Of direct relevance to 3D cadastral systems is the work by Olshannikova et al. (2015), examining the potential of integrating Big Data in different augmented and virtual environments. Li, Lv et al. (2015) also present a new 3D globe, named WebVRGIS, able to display multiple types of big data from Shenzhen city. Preliminary researches are also started by Drossis et al. (2016) about the visualization of big data in an ambient intelligent environment.
All these researches on big data give us an opportunity to explore 3D cadastre from another point of view. As part of big data and visual analytics, GeoBI (Geospatial Business Intelligence) systems offer motivating opportunities to take into account 3D cadastre model and data. In fact, GeoBI is “an intelligent coupling of GIS tools with Business Intelligence (BI) technologies to suitably exploit, analyse and visualize geo-spatial part of business data (e.g. borders, places, addresses, GPS coordinates, routes, etc.)” (Diallo et al. 2015). Spatial OLAP tools provide GeoBI client interfaces (Rivest et al. 2005). With such clients, combination of Spatial OLAP tools with virtual globes have already be made in order to facilitate the discovery and exploration of multidimensional data (i.e. thematic, temporal and spatial data) on 3D maps (Di Martino et al. 2009; Ferraz and Santos 2010).

5. DISCUSSION AND CONCLUSION

This paper provides a synthesis of current research and development activities in the context of 3D cadastral visualization. It shows that the topics vary from the identification and characterization of cadastral data, to symbolization and realization of visualization. In each case while 3D cadastral visualization can benefit from the work carried out in related fields – gaming, human computer interaction, augmented or virtual reality and so forth – it is important to realise that unlike other domains the data to be visualized in 3D must be linked not only to physical objects but especially to legal boundaries, which can range from the boundary of the parcels, easements, restrictions, and to the distinction between common and private properties. Additionally, we need to recognize that, while closely aligned, cadastral systems are distinct from engineering or urban data – in particular due to the legal aspects, and the challenges of visualizing information that does not have a 1:1 correspondence with physical features and thus could not be visually controlled in the real world (cadastre boundaries are what we called fiat boundaries). This adds an additional level of research to ensure that any solutions are fit for purpose, and highlights the need for interdisciplinary collaboration with those having cadastral expertise and experts from other domains. There is still a need to diversify the research domains considered in order to enlarge the audience and, consequently, disseminate the challenges and innovations of 3D cadastral visualization. Challenges to be addressed include the following:

5.1 Understanding User Needs and Functional Requirements

Understand user needs is perhaps the most fundamental of all the challenges, as it is only through this process, and via close collaboration with users, will it be possible to migrate from a 2D to a 3D visualization. To understand the specific needs of 3D Cadastre users, researchers need to meet and engage the professional end-users and be part of their day-to-day activities. Importantly, users do not only include notaries, land lawyers or land surveyors – in fact, the participation of a wider spectrum of cadastral users—e.g. urban planners or the general public—is necessary.

Functional requirements are one aspect of user needs to explore – i.e. what do users expect from the 3D visualization software in terms of performing visualization tasks (cross sections, viewpoints, visualising hidden objects, navigating in a 3D world, providing details about RRR) but also the identification of spatial relationships between features (spatial relationship of touch, cross, overlap). A key difference from other domains is the fact that users of 3D cadastre may not be using the software on its own, but instead would be using it in conjunction with, for
example, the production of a report. Additionally, and again in contrast with many other 3D projects, maps (and associated cartographic principles) have been around for a thousand of years, and 2D maps and vertical profiles are still perceived as valuable solutions, and must not be excluded from any research.

These requirements are central to allowing users to accomplish their daily tasks. However, integrated 3D visualization tools embedding these are currently missing, with some functionality (e.g. cross sections) being present in CAD/BIM and other elements (e.g. spatial relationships) in GIS. More specifically, to date, much of the 3D cadastral visualization approaches have focussed on ownership boundaries rather than the challenging visualization of right restrictions. While some tools offer editing capabilities (CAD/BIM and GIS tools such as ArcScene), some are restricted to viewing data. As the latter approach reduces the complexity of the software, both approaches may be relevant to different user groups. It remains to be seen whether we will be able to adapt existing tools to user needs or whether there is a role for a custom-built 3D cadastral toolkit.

### 5.2 Usability of Tools and Training

Moving from a 2D workflow to a 3D workflow involves a major cognitive leap and a steep learning curve, and users have to learn how to manipulate a 3D model, how to interact with the 3D model and to develop an understanding of the new semiotic approaches required for 3D. There is thus a major role to be played through both usability and semiotic research in this domain.

Building on the functionality highlighted above, linking the visualization system with a legal document such as a deed or title, which is well known to cadastre experts, would help by lessening the cognitive leap required to understand the purpose of the 3D system. We also need to participate in educational programs to help practitioners adapt to new realities and technologies, and in particular to ensure that undergraduate students are involved in 3D systems as part of their professional development. This new generation of citizens and professionals is much more aware of technologies and the acceptability level of new solutions is probably higher.

As researchers, it is also important to consider alternative approaches - in particular, given the extensive training and cognitive load required to move into 3D, a key question still needs to be highlighted regarding whether a 3D visualization systems is required to implement 3D cadastre (full or hybrid). Is it possible to work with 3D cadastre without having recourse to a 3D digital visualization system (Pouliot et al. 2011; Stoter 2004). This is particularly important to recall since 2D maps and vertical profiles are in many cases adequate to represent the geographic phenomena and support decision-making associated with land and property, and additionally professionals working in this area are accustomed to working with these 2D maps and profiles.

### 5.3 Organizational, Legal and Ethical Issues

Being involved in committees to adapt laws and regulations is probably a must. We, as specialists in spatial data processing and visualization, should be part of this step, placing the visualization in the context of land information system and requirement at the centre of discussions on the future of the profession and providing insight into legal options regarding registration, modelling and visualization using 3D approaches. As part of this, we should also better establish what to call the “3D product”, since in many ways the term 3D Cadastre is too
broad, whereas a term such as a “3D City Model” or “3D Map of a Road” is something tangible that is easily understood.

Ethical issues are particularly important, and are especially relevant in the context of property information – both from the standpoint of the information held as well as from the importance of understanding how users perceive and understand 3D visualizations. Promoting quality assessment, improving confidence in the 3D product and making limitations known are part of an overall ethical approach to 3D visualization. We need to understand how to do this while at the same time not over-complicating the visual interface and software system. Additionally, metadata analysis, and quality assessment for 3D cadastral visualization is an area where no research has yet been conducted.

5.4 Conclusion
As can be seen from this paper, the third dimension in cadastre may be perceived as an opportunity to enlarge the role of cadastre data and to involve new users or develop new markets. A number of positive steps have been made in this direction - in particular with regard to software to visualize such data - but much remains to be done. To conclude, we ask ourselves whether 3D models implemented, visualized, and integrated in the everyday duties of land administration players? Our analysis indicates that this is not yet the case, even though greater efforts have been made to increase users’ participation. Changing habits is a long process and must be addressed step by step by confronting the challenges listed above. This is particularly the case in a domain such as cadastre application, which involves a legal framework applied to properties/possession/rights, and thus human values. Despite these issues, reality is three-dimensional, as is any decision-making associated with it, so it is important that visualization migrates to 3D.

REFERENCES


Chapter 5. Visualization and New Opportunities

FIG publication Best Practices 3D Cadastres - Extended version


---

Jacynthe Pouliot, Claire Ellul, Frédéric Hubert, Chen Wang, Abbas Rajabifard, Mohsen Kalantari, Davood Shojai, Behnam Atazadeh, Peter van Oosterom, Marian de Vries, and Shen Ying

Chapter 5. Visualization and New Opportunities

FIG publication Best Practices 3D Cadastres - Extended version

Jacynthe Pouliot, Claire Ellul, Frédéric Hubert, Chen Wang, Abbas Rajabifard, Mohsen Kalantari, Davood Shojaei, Behnam Atazadeh, Peter van Oosterom, Marian de Vries, and Shen Ying

Chapter 5. Visualization and New Opportunities
FIG publication Best Practices 3D Cadastres - Extended version


Jacynthe Pouliot, Claire Ellul, Frédéric Hubert, Chen Wang, Abbas Rajabifard, Mohsen Kalantari, Davood Shojaei, Behnam Atazadeh, Peter van Oosterom, Marian de Vries, and Shen Ying

Chapter 5. Visualization and New Opportunities

FIG publication Best Practices 3D Cadastres - Extended version
Chapter 5. Visualization and New Opportunities

FIG publication Best Practices 3D Cadastres - Extended version


Jacynthe Pouliot, Claire Ellul, Frédéric Hubert, Chen Wang, Abbas Rajabifard, Mohsen Kalantari, Davood Shojaei, Behnam Atazadeh, Peter van Oosterom, Marian de Vries, and Shen Ying

Chapter 5. Visualization and New Opportunities
FIG publication Best Practices 3D Cadastres - Extended version
Chapter 5. Visualization and New Opportunities

FIG publication Best Practices 3D Cadastres - Extended version

Jacynthe Pouliot, Claire Ellul, Frédéric Hubert, Chen Wang, Abbas Rajabifard, Mohsen Kalantari, Davood Shojaei, Behnam Atazadeh, Peter van Oosterom, Marian de Vries, and Shen Ying


BIOGRAPHICAL NOTES AND CONTACT DETAILS

Ramiro Alberdi graduated in Surveying Engineering from National University of Litoral (Santa Fe, Argentina) and he currently researches on river legal boundaries and 3D/4D Cadastres, especially in the Paraná River context.

National University of Catamarca
Faculty of Engineering and Hydrics Sciences
Ciudad Universitaria, Santa Fe, 3000, Argentina
Phone: +543424683416
E-mail: ramiroalb76@gmail.com

Adrián Alvarado is a Lawyer for the University of Costa Rica, specialist in Property Tax. He teaches at the Universities UCEM and University of San José in Costa Rica and currently he works as a public notary and private consultant on various topics in Alajuela, Costa Rica.

Phone: (506) 2430-6168
Fax: (506) 2443-7322
Alajuela, Costa Rica
E-mail: Alvaco1609@hotmail.com

Behnam Atazadeh has completed his bachelor degree in Geomatics & Geodetic Engineering at University of Tabriz in 2009. He has recently submitted his PhD thesis in the Department of Infrastructure Engineering at the University of Melbourne. His PhD project was about the enrichment of building information models for land administration domain.

Centre for Spatial Data Infrastructures and Land Administration (CSDILA)
Department of Infrastructure Engineering, Melbourne School of Engineering
The University of Melbourne, Victoria 3010, Australia
E-mail: behnam.atazadeh@unimelb.edu.au

Marian de Vries holds an MSc in Economic and Social History from the Free University Amsterdam, The Netherlands (VU). Since 2001 she works as researcher at the Section GIS Technology, OTB, Delft University of Technology. Focus of her research is on distributed geo-information systems. She participated in a number of projects for large data providers in the Netherlands such as Rijkswaterstaat and the Dutch Cadastre, and in the EU projects HUMBOLDT (Data harmonisation and service integration) and ELF (European Location Framework).

Section GIS technology, Department OTB
Faculty of Architecture and the Built Environment, TU Delft
Julianalaan 134, 2628 BL Delft, The Netherlands
Phone: (+31) 15 2784268
E-mail: M.E.deVries@tudelft.nl

Efi Dimopoulou is Professor at the School of Rural and Surveying Engineering, National Technical University of Athens, in the fields of Cadastre, Spatial Information Management, Land Policy, 3D Cadastres and Cadastral Modelling. She is the Programme Director of the NTUA Inter-Departmental Postgraduate Course «Environment and Development» and President of the Hellenic Society for Geographical Information Systems (HellasGIs).

National Technical University of Athens, School of Rural & Surveying Engineering
9, Iroon Polytechniou, 15780 Zografou, Greece
José-Paulo Duarte de Almeida (Lic. Geomatic Engineering - University of Coimbra; M.Sc. Civil Engineering - Specialisation Urban Engineering - UC; Ph.D. Geomatic Engineering – University College London) has been working at the University of Coimbra for twenty years now, initially as Lecturer’s Teaching Assistant and currently as Lecturer in Geomatic Engineering. He is also researcher at INESCC (Institute for Systems & Computers Engineering at Coimbra). In terms of research, he’s been working on: interpretation of unstructured geospatial data in GIS environment using Graph Theory; semantic enrichment of 3D data towards the development of 3D city models; 3D cadastre and 3D cadastral systems.

Mohamed El-Mekawy is a researcher at the Department of Computer and Systems Sciences, Stockholm University.

Claire Ellul is a Reader (Associate Professor) in Geographical Information Science at University College London, UK. She had 10 years of experience as a GIS consultant prior to joining academia in 2003, and her research now focuses on the usability of spatial data, with particular focus on 3D GIS, as well as on the integration of GIS and Building Information Modelling.

Diego Erba is a former Senior Fellow of the Lincoln Institute of Land Policy. Currently, as independent consultant, he is working in different Latin American countries in projects related to multipurpose cadastre implementation. He is senior lecturer at the National University of Litoral, Argentina.
Tarun Ghawana is currently a Visiting Faculty and Dissertation Coordinator at Centre for Disaster Management Studies at a Delhi State University for MBA (Disaster Management) Programme. He is associated with Integrated Spatial Analytics Consultants Pvt. Ltd., India as an external researcher since 2009. He is an MSc (GIS) from ITC, Netherlands and has international research publications on various topics related to land administration, 3D Cadastre, GIS and disaster management. He has worked with academia, private consultants and government departments in India, Netherlands, Germany and Kenya on SDI and GIS based natural resource management.

Integrated Spatial Analytics Consultants Pvt. Ltd.
Dwarka, New Delhi, India
Phone: +9958117758
E-mail: tarungh@gmail.com

Charisse Griffith-Charles Cert. Ed. (UBC), MPhil. (UWI), PhD (UF), FRICS is currently Senior Lecturer in Cadastral Systems, and Land Administration in the Department of Geomatics Engineering and Land Management at the University of the West Indies, St. Augustine, where her research interests are in land registration systems, land administration, and communal tenure especially ‘family land’. Her publications focus on land registration systems, land administration, cadastral systems, and land tenure. She is currently President Commonwealth Association of Surveying and Land Economy (CASLE) Atlantic Region.

Department of Geomatics Engineering and Land Management Faculty of Engineering,
The University of the West Indies St. Augustine
Trinidad and Tobago
Phone: +868 662 2002 ext 82520
Fax: +868 662 2002 ext 83700
E-mail: Charisse.Griffith-Charles@sta.uwi.edu

Frédéric Hubert is a professor at the Department of Geomatics Sciences at Université Laval, Québec, Canada, since 2007. He is also member of the Center for Research in Geomatics (CRG). He has 15 years of experience in the Geoinformatics field. His research interests are mainly concentrated on GIS, geovisualization, geospatial business intelligence, geospatial multimodal interactions, usability of geospatial systems, mobile spatial context, mobile augmented reality, and geospatial web services. He has also been reviewer for various international scientific conferences.

Department of Geomatics Sciences, Université Laval
1055 avenue du Séminaire, Quebec City, G1V 0A6, Canada
Phone: +1 (418) 656-2131, ext. 7998
Fax: +1 (418) 656-7411
E-mail: frederic.hubert@scg.ulaval.ca

Karel Janečka has a Ph.D. (2009) Geomatics, University of West Bohemia in Pilsen. He had been working as a database programmer at the Czech Office for Surveying, Mapping and Cadastre in Section of cadastral central database between 2006 and 2008. Since 2009 he is a researcher at University of West Bohemia, Department of Geomatics. His research activities are spatial data infrastructures (SDI), geographical information systems (GIS), spatial databases, spatial data mining, and 3D cadastre. He has experience with coordination of several EU projects and is also reviewer of several international scientific journals. Since
2012 he is the president of the Czech Association for Geoinformation and member of National Mirror Committee 122 Geographic information/Geomatics.

University of West Bohemia
Technická 8, Pilsen, Czech Republic
Phone: + 420 607982581
E-mail: kjanecka@kgm.zcu.cz
Website: http://gis.zcu.cz

Mohsen Kalantari is a Senior Lecturer in Geomatics Engineering and Associate Director at the Centre for SDIs and Land Administration (CSDILA) in the Department of Infrastructure Engineering at The University of Melbourne. He teaches Land Administration Systems (LAS) and his area of research involves the use of technologies in LAS and SDI. He has also worked as a technical manager at the Department of Sustainability and Environment (DSE), Victoria, Australia.

Department of Infrastructure Engineering, University of Melbourne
Victoria 3010, Australia
Phone: +61 3 8344 0274
E-mail: mohsen.kalantari@unimelb.edu.au
Website: http://www.csdila.unimelb.edu.au/people/saeid-kalantari-soltanieh.html

Marcin Karabin Ph.D. D.Sc. is a full-time research worker at the Warsaw University of Technology (Department of Cadastre and Land Management, Faculty of Geodesy and Cartography). Also working as a licensed surveyor.

Warsaw University of Technology
Department of Cadastre and Land Management
Plac Politechniki 1, 00-661 Warsaw, Poland
Mob.: +48-608-402-505
E-mail: M.Karabin@interia.pl

Sudarshan Karki is a Senior Spatial Information Officer in the Department of Natural Resource and Mines, Queensland Government, Australia. He is a surveyor and has completed a Master of Spatial Science by Research at the University of Southern Queensland (USQ) in 2013 and a professional Master’s Degree in Geo-informatics from ITC, The Netherlands in 2003. He has continued his research interest in 3D cadastre and is currently undertaking his PhD research at USQ.

Queensland Government, Department of Natural Resources and Mines
Landcentre, Cnr Main and Vulture Streets, Woolloongabba,
Brisbane, Queensland 4102, Australia
Phone: +61 7 3330 4720
E-mail: Sudarshan.Karki@dnrm.qld.gov.au

Dimitrios Kitsakis is a Ph.D. student at School of Rural and Surveying Engineering of National Technical University of Athens. He graduated from the same institution in 2011. His research interests include 3D Cadastres, 3D Modelling and Land Law.

National Technical University of Athens, School of Rural & Surveying Engineering
125, Char. Trikoupi str., 11473, Athens, Greece
Phone: +306949725897
E-mail: dimskit@yahoo.gr
Mila Koeva is working as assistant professor in Land Information at University of Twente, ITC Faculty - Department of Urban and Regional Planning. Her main areas of expertise include 3D modelling and visualization, 3D Cadastre, 3D Land Information, UAV, digital photogrammetry, image processing, producing large scale topographic and cadastral maps, GIS, application of satellite imagery for updating cadastral information among others.

University of Twente (ITC)
Hengeloestraat 99 7514 AE Enschede, The Netherlands
Phone: +31 (0)53 487 44 44
Fax: +31 (0)53 487 44 00
E-mail: m.n.koeva@utwente.nl
Website: www.itc.nl

Christiaan Lemmen holds a degree in geodesy from Delft University of Technology, the Netherlands. He received a PhD from this University for his thesis ‘A Domain Model for Land Administration’. He is an international consultant at Kadaster International. He is chair of the Working Group 7.1 ‘Pro Poor Land Tools’ of FIG Commission 7, ‘Cadastre and Land Management’, and contributing editor of GIM International. He is director of the FIG International Bureau of Land Records and Cadastre OICRF.
Netherlands Cadastre, Land Registry and Mapping Agency
P.O. Box 9046
7300 GH Apeldoorn, The Netherlands
Phone: +31 88 1833110
E-mail: Chrit.Lemmen@kadaster.nl
Website http://www.kadaster.nl

Monica Montero is a Lawyer from the University of Costa Rica. Consultant on issues of public law of the European Union, UNDP, IDB. She is currently working on Procurement of the United Nations Office for Project Services (UNOPS) in Costa Rica.
Provincia de Heredia, Costa Rica,
La Ribera de Belén, Residencia Estancias de la Ribera, casa N° 24.
Phone: (506) 2239-4841
E-mail: monteromonica6@hotmail.com

Gerhard Navratil is Senior Researcher in the research group Geoinformation of the Department for Geodesy and Geoinformation of TU Vienna.
Technical University Vienna
Department for Geodesy and Geoinformation
Gusshausstr. 27-29, 1040 Vienna, Austria
Phone: +43-1-58801-12712
E-mail: navratil@geoinfo.tuwien.ac.at

Peter van Oosterom obtained an MSc in Technical Computer Science in 1985 from Delft University of Technology, the Netherlands. In 1990 he received a PhD from Leiden University. From 1985 until 1995 he worked at the TNO-FEL laboratory in The Hague. From 1995 until 2000 he was senior information manager at the Dutch Cadastre, where he was involved in the renewal of the Cadastral (Geographic) database. Since 2000, he is professor at the Delft University of Technology, and head of the ‘GIS Technology’ Section, Department OTB, Faculty of Architecture and the Built Environment, Delft University of
Technology, the Netherlands. He is the current chair of the FIG Working Group on ‘3D Cadastres’.

Delft University of Technology, Faculty of Architecture and the Built Environment
Department OTB, GIS Technology Section
Julianalaan 134, 2628 BL Delft, The Netherlands
Phone: +31 15 2786950, Fax +31 15 2784422
E-mail: P.J.M.vanOosterom@tudelft.nl

Jesper Paasch is a Senior Lecturer in Real Estate Planning and Land Law at the University of Gävle, Sweden, and research coordinator at Lantmäteriet, the Swedish mapping, cadastral and land registration authority. He received a PhD degree from KTH Royal Institute of Technology, Sweden, in 2012 and a M.Sc. degree in Land surveying, cadastre and planning and a MTM degree in GeoInformatics, both from Aalborg University, Denmark, in 1989 and 1998, respectively.

University of Gävle, Department of Industrial Development, IT and Land Management & Lantmäteriet, the Swedish mapping, cadastral and land registration authority, Sweden
Phone: +46720154701, +4626633001
E-mail: jesper.paasch@hig.se, jesper.paasch@lm.se

Jenny Paulsson is an Associate Professor in Real Estate Planning and Land Law at KTH Royal Institute of Technology in Stockholm, Sweden.

KTH Royal Institute of Technology
Real Estate Planning and Land Law
Teknikringen 10B, 10044 Stockholm, Sweden
Phone: +4687906661
E-mail: jenny.paulsson@abe.kth.se

Jacynthe Pouliot is a full professor at the Department of Geomatics Sciences at Universite Laval, Quebec, Canada. She is an active researcher at the Center for Research in Geomatics and received a personal discovery grant from the Natural Sciences and Engineering Research Council of Canada. Her main interests are the development of GIS systems, the application of 3D modeling techniques in the domain of cadastre, and the integration of spatial information and technologies. She has been a member of the Professional association of the Quebec land surveyors since 1988.

Department of Geomatics Sciences (www.scg.ulaval.ca)
Université Laval
Casault Building, Office 1349
1055 avenue du Seminaire, Quebec City, G1V0A6, Canada
Phone: (418) 656-2131, ext. 8125
E-mail: jacynthe.pouliot@scg.ulaval.ca

Abbas Rajabifard is a Professor and Head of the Department of Infrastructure Engineering and Director of Centre for SDIs at the University of Melbourne, Australia. He is Chair of the UN Academic Network for Global Geospatial Information Management (UNGGIM), and is Past President of Global SDI (GSDI) Association. Prof Rajabifard was vice Chair, Spatially Enabled Government Working Group of the UNGGIM for Asia and the Pacific. He has published and consulted widely on land and spatial data management and policy and SDI design and development.
Miodrag Roić graduated in Geodesy from the University of Zagreb, Faculty of Geodesy. Since 1996, he is a professor at the University of Zagreb, Faculty of Geodesy. He was Vice Dean of the Faculty, Head of the Chair of Spatial Information Management and the Institute of Engineering Geodesy, and he was the Dean 2011-2015. The topics that he specializes in are land administration systems, engineering geodesy, cadastres and geoinformatics. He was an editor-in-chief of "Geodetski list", an internationally recognized Croatian scientific geodetic journal. He is a corresponding member of the German Geodetic Commission (DGK) and many other national and international scientific and professional institutions.

University of Zagreb, Faculty of Geodesy Kačićeva 26
10000 Zagreb, Croatia
Phone: + 385 1 4639 222 Fax: + 385 1 4828 081
E-mail: mroic@geof.hr
Website: http://www.geof.unizg.hr

Francis Roy is a full professor and head of the Department of Geomatics Sciences at Laval University (Québec City, Canada). His teaching and research activities focus on cadastral systems, land property, land administration, land-use planning, and disaster risk reduction.

Department of Geomatics Sciences (www.scg.ulaval.ca)
Université Laval
Casault Building, office 1317
1055 avenue du Séminaire, Québec City, G1V0A6, Canada
Phone: (418) 656-2131, ext. 13315
E-Mail: Francis.Roy@scg.ulaval.ca

Davood Shojaei finished his PhD on 3D Cadastral Visualisation in 2014 at the Centre for SDIs and Land Administration at the Department of Infrastructure Engineering, the University of Melbourne, Australia. He developed 3D cadastral visualisation requirements and implemented some prototype systems to represent 3D land rights, restrictions and responsibilities in cadastre. Now, he is a 3D cadastre specialist at Department of Environment, Land, Water and Planning in Australia, and investigates the technical aspect of 3D digital cadastre implementation.

ePlan Senior Project Officer
Land Use Victoria, Department of Environment, Land, Water and Planning
Level 18, 570 Bourke Street
Melbourne, Victoria, 3000, Australia
Phone: (+61) 3 8636 2618
Email: davood.shojaei@delwp.vic.gov.au
Rod Thompson has been working in the spatial information field since 1985. He designed and led the implementation of the Queensland Digital Cadastral Data Base, and is now advising on spatial database technology with an emphasis on 3D and temporal issues. He obtained a PhD at the Delft University of Technology in December 2007.

Delft University of Technology, Faculty of Architecture and the Built Environment
Department OTB, Section GIS-technology
P.O. Box 5030, 2600 GA Delft, The Netherlands
E-mail: R.J.Thompson@tudelft.nl

Nikola Vučić is the Head of the Department for Administrative and Professional Supervision at the State Geodetic Administration of the Republic of Croatia.

State Geodetic Administration,
Gruška 20, Zagreb, Croatia
Phone: +385 1 6165 439
E-mail: nikola.vucic@dgu.hr

Chen Wang obtained his MSc in Geographical Information System from the East China Normal University, China. He recently received a Ph.D diploma at the Department of Geomatics Sciences at Universite Laval, Quebec, Canada. He is currently lecturer at the Department of Geo-information and Geomatics, Anhui University, China. His current research topic is assessing the visual variables for 3D visualization of legal units associated with apartment buildings.

Department of Geo-information and Geomatics
School of Resources and Environmental Engineering
Anhui University, China
E-mail: chen.wang@ahu.edu.cn

Zhixuan Yang is a lecturer in the School of Investment and Construction Management at Dongbei University of Finance and Economics. Her main research interests are 3D land and property management, city governance and sustainable development.

School of Investment and Construction Management
Dongbei University of Finance and Economics
Office 509, Shixuezhai, 217 Jianshan Street,
Shahekou District, 116025, Dalian, Liaoning, China
Phone: +86 1370-494-8946
E-mail: zxyang@dufe.edu.cn

Shen Ying is a professor in School of Resource and Environmental Sciences, Wuhan University. He received a B.S. (1999) in Cartography from Wuhan Technique University of Surveying and Mapping (WTUSM), and MSc and PhD degree in Cartography and GIS from Wuhan University in 2002 and 2005, respectively. His research interests are in 3D GIS and cadastre, updating and generalization in multi-scale geo-database and ITS.

School of Resource and Environmental Sciences Wuhan University
129 Luoyu Road
Wuhan 430070, China
Phone: +86 27 68778319 Fax: +86 27 68778893
E-mail: shy@whu.edu.cn
Sisi Zlatanova obtained her MSc in Geodesy, Photogrammetry and Cartography at the University of Architecture, Civil Engineering and Geodesy, Sofia, Bulgaria in 1984 and specialised Applied Mathematics at Technical University Sofia. She has received her PhD degree from Graz University of Technology, Austria in 2000. She worked as a software developer at Bulgarian Central Cadastre (1985-1989), assistant professor at University of Architecture and Civil Engineering, Sofia (1989-1999) and associate professor at the Delft University of Technology (2000-2017. Since 2018 she is a professor at the University of New South Wales, Faculty of Built Environment, Sydney, Australia. She is the current president of ISPRS Technical Commission IV ’Spatial Information Science’.

UNSW Built Environment
Kensington Campus
Sydney, NSW 2052, Australia
Phone: +61 2 93856847
E-mail: s.zlatanova@unsw.edu.au
website http://www.be.unsw.edu.au
Explanation of the front and the back cover illustrations can be found on the back of the front cover.
This publication is the result from the International Federation of Surveyors (FIG) joint commission 3 ‘Spatial Information Management’ and commission 7 ‘Cadastre and Land Management’ Working Group on 3D Cadastres. The increasing complexity of infrastructures and densely built-up areas requires a proper registration of the legal status (private and public), which only can be provided to a limited extent by the existing 2D cadastral registrations. Within the FIG Working Group the concept of 3D Cadastres with 3D parcels is intended in the broadest possible sense: 3D parcels include land and water spaces, both above and below surface. The level of sophistication of a 3D Cadastre in a specific country will in the end be based on the user needs, land market requirements, legal framework, and technical possibilities. This FIG publication collects the best known practices related to 3D Cadastres in a single book organized in five coherent chapters:

Chapter 1. Legal foundations  
Chapter 2. Initial Registration of 3D Parcels  
Chapter 3. 3D Cadastral Information Modelling  
Chapter 4. 3D Spatial DBMS for 3D Cadastres  
Chapter 5. Visualization and New Opportunities

The FIG publication ‘3D Cadastres Best Practices’ provides a clear and comprehensive overview to both the newcomers and experts in the 3D Cadastres community.