Aluminum Complexes Bearing Functionalized Trisamido Ligands and their Reactivity in the Polymerization of ε-Caprolactone and rac-Lactide

Marie-Hélène Thibault and Frédéric-Georges Fontaine*

Département de Chimie, Université Laval, 1045 Avenue de la Médecine, Québec (Québec), Canada, G1V 0A6

Email:

frederic.fontaine@chm.ulaval.ca

This is the peer reviewed version of the following article: [Aluminum Complexes Bearing Functionalized Trisamido Ligands and their Reactivity in the Polymerization of ε-Caprolactone and rac-Lactide, Dalton Trans., 2010, 39, 5688–5697], which has been published in final form at

[10.1039/c0dt00005a].
Introduction

The worldwide consumption of plastics has risen steadily since the revolutionary discovery of alkene polymerization by Ziegler and Natta. While a significant percentage of the polymers currently produced are recycled, there is still a large amount finding their way into the ecosystem, having a negative impact on the environment. An ecological alternative to saturated polyolefins are biodegradable polymers such as polylactides and polycaprolactones. In addition to biodegradability, these materials are biocompatible and are widely used for medical applications. However, in order to obtain polymers with good mechanical properties, the microstructure of the polymeric chains, including their molecular weight and polydispersity, needs to be controlled; something that can be done using catalysis. As such, interest over the past decade for the catalytic ring-opening polymerization of lactones and lactides has spurred several review articles.

Numerous metals have been known to catalyze the formation of polylactones and polylactides with the most notable catalysts being electrophilic metal ions, such as magnesium, calcium, titanium, iron, zinc, tin, and aluminum. Aluminum is one of the most efficient catalysts for ε-caprolactone and lactide polymerization and is generally stabilized using N or O supported ligands. Whereas single site catalysts are numerous, examples where more than one metal site is required for efficient catalysis are scarce. Examples of such collaborative work are found in dizinc-monoalkoxide complexes that are believed to behave similarly to metalloenzymes (Figure 1A) and in a macrocyclic Schiff base bisaluminum complex where a cooperative effect between the two aluminum centers has been observed (R = H, Figure 1B). In the latter example, one aluminum atom serves as the Lewis acid, and an alkyl functionality bound to the second
metal atom attacks the carbonyl group of the incoming ester during catalysis. It was also proposed that adjacent aluminum centers linked in a fashion similar to aluminoxane (R = AlMe₂, Figure 1B), hindered the polymerization process, and that cooperation came instead between aluminum atoms on both extremities of the macrocycle. A specific arrangement of the metallic centers is thus crucial for cooperative behaviour.

Figure 1. Two examples of bimetallic catalysts for ring-opening polymerization of cyclic esters.

Our research group has been investigating the coordination chemistry of ambiphilic aluminum complexes having both Lewis acidic and basic moieties.¹⁵ Derivatives of cis,cis-triaminocyclohexane with pendant soft donor groups were chosen as ligands for the synthesis of ambiphilic ligands. Hard electrophilic metals such as Al³⁺ prefer to bind covalently to amido moieties,¹⁶ generating a Lewis acidic coordination site, whereas soft ligands are free to coordinate low oxidation state transition metals, such as
platinum(0). In our systematic study of the reactivity of the functionalized triaminocyclohexane ligands, we wish to report that the hexadentate ligands cis,cis-C₆H₉(NHCH₂C₆H₄-o-R)₃ (R = PPh₂, SPh) can bind one or two equivalents of AlMe₃ depending on the stoichiometry of the reaction. The bimetallic complexes formed are also active in ring-opening polymerization of cyclic esters, such as ε-caprolactone and lactides.

Results and Discussion

Ligand synthesis

The general procedure for the synthesis of the aminophosphine/thiol ligands is summarized in Scheme 1. Reaction of three equivalents of the corresponding 2-R-benzaldehyde with one equivalent of cis,cis-1,3,5-triaminocyclohexane afforded the Schiff bases cis,cis-C₆H₉(N=CHC₆H₄-o-R))₃ (1, 2) (R = PPh₂, SPh) in approximately 70% yield. The reduction of 1 and 2 using excess LiAlH₄ gave the hexadentate ligands cis,cis-C₆H₉(NHCH₂C₆H₄-o-R)₃ (3, 4) (R = PPh₂, SPh) in excellent yields. It should be noted that thiol analogues 2 and 4 show similar spectroscopic features to what was observed for 1 and 3, which have been previously reported.\(^{17}\)
Scheme 1.

Synthesis of the aluminum complexes

The protonolysis of an aluminum alkane precursor is a well-known strategy for the synthesis of aluminum amido complexes.18 As expected, \textbf{3} and \textbf{4} were completely converted to the amido complexes \textbf{5} and \textbf{6} (Scheme 2) upon addition of more than 2 equivalents of trimethylaluminum (or 1 equivalent of hexamethyldialuminum). Although the release of methane was observed as a singlet at 0.15 ppm by 1H NMR spectroscopy in both reactions, the presence of three singlets at -0.12, -0.22, and -0.52 ppm for \textbf{5} and at -0.15, -0.26, and -0.32 ppm for \textbf{6} did show that three methyl groups remained bound to the aluminum atoms. Another significant spectroscopic feature was the splitting of the single resonance for the methylene protons on the functional arms into three resonances integrating for two protons each. The resonances for the protons on the cyclohexyl ring also indicated a loss of symmetry; the signals that were observed as singlets in \textbf{3} and \textbf{4}
were split into two series of resonances in a 1:2 ratio. Finally, two resonances were observed by $^{31}\text{P}[^1\text{H}]\text{NMR}$ spectroscopy at -14.1 and -14.9 ppm for 5, integrating for a 1:2 ratio. These observations, and literature precedent by Johnson18b and Chen,19 are in agreement with the structure depicted in Scheme 2, where the functional arms of the cyclohexyl ring are in an axial position and a plane of symmetry is passing through the Al$_2$Me$_3$ core. Coordination to the aluminum atoms induces a flip in the cyclohexane framework, with the functionalized arms now in axial position, something that was previously observed for some cis,cis-triamidocyclohexane complexes of early transition metals.16 While the formation of 5 was clean by NMR spectroscopy, in the case of 6, a small excess of trimethylaluminum remained coordinated by the sulfide moieties and could not be removed under reduced pressure, as observed by the presence of broad signals in the ^1H NMR spectrum. Adding triethylamine proved efficient to generate 6 cleanly by forming the Et$_3$N·AlMe$_3$ adduct (^1H NMR $\delta = 2.19$, 0.68 and -0.40) which could be removed by subsequent washings with pentane. For comparison, Chen and al. reported that upon the addition of 2 equivalents of AlMe$_3$ to the more flexible ligand MeSi[SiMe$_2$NH(4-MeC$_6$H$_4$)]$_3$, only two of the amido moieties, instead of three as observed for 5 and 6, were binding the metal centers, generating a complex with a Al$_2$N$_2$ core.19
It was possible to obtain crystals of complex 6 by slow evaporation of a pentane solution, thus confirming its connectivity. The complex crystallizes in a P-1 space group with two independent molecules (Z = 4). The main difference between the molecules is the conformation of one of the functionalized arms. Indeed, the Al(1)-N(3)-C(36)-C(37) torsion angle is -135.2(1)° whereas the equivalent torsion angle on the other molecule (Al(11)-N(13)-C(136)-C(137)) is 147.9(2)°. However, in both molecules the thiophenyl moieties are in the same quadrant relative to the metallic core. An ORTEP representation of one of the molecules is shown in Figure 2 and a simplified depiction of the conformers is shown in Figure 3.

As observed for the solid state structure of 3,17 the higher symmetry observed in solution for the dialuminum complex is not present in the solid state structure of 6, suggesting a fast rotation of the functional arms in solution. In this complex, the ligand is bound to an Al-Me fragment by three nitrogen atoms while an AlMe\textsubscript{2} fragment shares two nitrogen atoms with the other metal center. Both aluminum centers are in distorted tetrahedral environments, with the N-Al-N angles of the N\textsubscript{2}Al\textsubscript{2} four-membered ring being...
small (78.90 to 79.66°). The nitrogen atoms N(1), N(2), N(11), and N(12) are in tetrahedral environments. On the other hand, N(3) and N(13), which are only bound to one Al atom, are in a sp² planar environment, as shown by the sum of the angles of 359°. The Al-N bond lengths are similar, ranging from 1.963(2) Å to 2.000(2) Å, with the exception of the Al(1)-N(3) and Al(11)-N(13) distances that are significantly shorter (1.7806(17) and 1.7960(17) Å, respectively). To our knowledge, three other structurally characterized complexes bound to tripodal ligands have been reported having similar N₃Al₂R₃ cores. In all examples, the terminal amido ligands have short N-Al bond length compared to the bridging amido. Complexes P[CH₂N-3,5-(CF₃)₂C₆H₃]₃Al₂Me₃ and Me₃Al.P(CH₂NPh)₃Al₂Me₃, reported by Johnson, and complex MeSi[SiMe₂N(4-MeC₆H₄)]₃AlH(AlH₂), reported by Chen, have terminal amido N-Al bonds of 1.829(3), 1.825(2), and 1.842(4) Å, respectively, and bridging amido N-Al bond lengths between 1.958 and 1.997 Å. The short bond length and the sp² hybridization could be induced by additional π-donation of the nitrogen lone pair to the aluminum atom, which would increase the N-Al bond strength while reducing the nucleophilicity of the amido group. It should be noted that no significant interaction between the sulfide and aluminum is observed. The similarity in the ³¹P{¹H} NMR chemical shifts of the dialuminum complex (-14.1 and -14.9 ppm) to that of free ligand 3 (-15.0 ppm), also suggests the absence of an Al-P interaction in complex 5.
Figure 2. ORTEP diagram of 6. The hydrogen atoms were omitted for clarity. Selected bond lengths (Å) and angles (deg): **Molecule 1:** Al(1)-N(1) 2.0000(16); Al(1)-N(2) 1.9727(16); Al(1)-N(3) 1.7806(17); Al(2)-N(1) 1.9783(16); Al(2)-N(2) 1.9890(17); Al(1)-C(7) 1.948(2); Al(2)-C(8) 1.971(2); Al(2)-C(9) 1.970(2); N(3)-Al(1)-C(7) 114.64(9); N(3)-Al(1)-N(2) 109.07(7); N(3)-Al(1)-N(1) 107.00(7); N(2)-Al(1)-N(1) 79.45(6); N(1)-Al(2)-N(2) 79.59(6); C(36)-N(3)-C(3) 115.38(16); C(36)-N(3)-Al(1) 131.90(13); C(3)-N(3)-Al(1) 111.59(12). **Molecule 2:** Al(11)-N(11) 1.9625(17); Al(11)-N(12) 1.9824(17); Al(11)-N(13) 1.7960(17); Al(12)-N(11) 1.9976(18); Al(12)-N(12) 1.9793(17); Al(11)-C(107) 1.949(2); Al(12)-C(108) 1.971(2); Al(12)-C(109) 1.971(2); N(13)-Al(11)-C(107) 112.87(9); N(13)-Al(11)-N(12) 108.74(8); N(13)-Al(11)-N(11)
108.09(8); N(12)-Al(11)-N(11) 79.66(7); N(11)-Al(12)-N(12) 78.90(7); C(136)-N(13)-C(105) 113.10(16); C(136)-N(13)-Al(11) 124.94(13); C(105)-N(13)-Al(11) 110.80(12).

Figure 3. Depiction of the different orientations of the functionalized arm in crystal of 6

When one equivalent of AlMe$_3$ was added to either 3 or 4 in C$_6$D$_6$, new products were observed exhibiting only one Al-Me resonance in the 1H NMR spectrum at -0.87 ppm and -0.82 ppm, for 7 and 8, respectively. The 1H NMR spectra of the two latter aluminum compounds were also much more complex, with all hydrogen atoms on the organic framework integrating for one each, indicating a total absence of symmetry in solution. It can be proposed that the tripodal ligand is bound to the methylaluminium fragment with the metal in a pseudo-tetrahedral fashion. For this to happen, one of the nitrogen atom forms a dative interaction with a secondary amine. Using HMQC and COSY experiments, it was possible to locate the amine protons at 3.56 and 3.62 ppm, for 7 and 8 respectively, since they were the only ones not correlated to a carbon atom. Due to this nitrogen atom being chiral and sp3-hybridized, all of the diastereotopic fragments become magnetically unequivalent, as proposed by Chen et al.19 The isolation of these
compounds in the solid state proved impossible, since they did not precipitate from solution and remained as oils with small amount of uncharacterized impurities. Reaction of the bimetallic complexes with one equivalent of their respective free ligand readily afforded the corresponding monometallic complexes and the addition of one equivalent of AlMe$_3$ to 7 and 8 affords 5 and 6, respectively.

Polymerization of ε-caprolactone

The ring opening polymerization (ROP) of ε-caprolactone (CL) was performed using complexes 5, 6, and 8 as catalysts in a toluene solution. Since the isolation and the purification of 7 proved not feasible, no catalytic run was done with it. The yields were calculated according to the mass of the polymer that precipitated after quenching the solution with a CH$_2$Cl$_2$ and CH$_3$OH mixture, and the M_n and M_w values were calculated using steric exclusion chromatography (SEC) for the high molecular weight domain (Figure ESI 1, before 20 minutes). The results are summarized in Table 1.
Table 1. Polymerization of ε-caprolactone using 5, 6, and 8 as catalysts.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>[Cat]:[CL]</th>
<th>Vol (ml)</th>
<th>Time (h)</th>
<th>Temp. (°C)</th>
<th>Yield (%)</th>
<th>M_n^d</th>
<th>M_w^d</th>
<th>M_{RMM}^e</th>
<th>PDI^d</th>
<th>Small: High^f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>1:150</td>
<td>1</td>
<td>1</td>
<td>RT</td>
<td>7</td>
<td>10900</td>
<td>14100</td>
<td>1510</td>
<td>1.3</td>
<td>85:15</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1:150</td>
<td>1</td>
<td>6</td>
<td>RT</td>
<td>65</td>
<td>18000</td>
<td>47100</td>
<td>810</td>
<td>2.62</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1:150</td>
<td>1</td>
<td>50</td>
<td>50</td>
<td>78</td>
<td>25400</td>
<td>47100</td>
<td>4190</td>
<td>1.85</td>
<td>62:38</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>1:150</td>
<td>1</td>
<td>1</td>
<td>RT</td>
<td>17</td>
<td>NA</td>
<td>NA</td>
<td>1100</td>
<td>NA</td>
<td>26:74</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1:150</td>
<td>1</td>
<td>6</td>
<td>RT</td>
<td>99</td>
<td>14600</td>
<td>45500</td>
<td>7180</td>
<td>2.62</td>
<td>NA</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1:150</td>
<td>1</td>
<td>1</td>
<td>50</td>
<td>98</td>
<td>19300</td>
<td>47900</td>
<td>10800</td>
<td>2.48</td>
<td>10:90</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>1:150^b</td>
<td>1</td>
<td>6</td>
<td>RT</td>
<td>64</td>
<td>8700</td>
<td>16300</td>
<td>7550</td>
<td>1.87</td>
<td>20:80</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>1:76^c</td>
<td>3</td>
<td>1</td>
<td>50</td>
<td>35</td>
<td>12500</td>
<td>25500</td>
<td>5030</td>
<td>2.03</td>
<td>4:96</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>1:150^c</td>
<td>3</td>
<td>1</td>
<td>50</td>
<td>68</td>
<td>23800</td>
<td>48200</td>
<td>7680</td>
<td>2.03</td>
<td>11:89</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>1:300^c</td>
<td>3</td>
<td>1</td>
<td>50</td>
<td>88</td>
<td>52000</td>
<td>110800</td>
<td>24500</td>
<td>2.13</td>
<td>2:98</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>1:400^c</td>
<td>3</td>
<td>1</td>
<td>50</td>
<td>94</td>
<td>82000</td>
<td>135200</td>
<td>26100</td>
<td>1.65</td>
<td>4:96</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>1:600^c</td>
<td>3</td>
<td>1</td>
<td>50</td>
<td>71</td>
<td>69500</td>
<td>145200</td>
<td>36100</td>
<td>2.09</td>
<td>7:93</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>1:76</td>
<td>1</td>
<td>1</td>
<td>50</td>
<td>79</td>
<td>13700</td>
<td>26600</td>
<td>5100</td>
<td>1.94</td>
<td>15:85</td>
</tr>
<tr>
<td>14</td>
<td>8^a</td>
<td>1:76</td>
<td>1</td>
<td>1</td>
<td>50</td>
<td>78</td>
<td>46400</td>
<td>108500</td>
<td>31800</td>
<td>2.34</td>
<td>6:94</td>
</tr>
<tr>
<td>15</td>
<td>8^a</td>
<td>1:76</td>
<td>1</td>
<td>1</td>
<td>RT</td>
<td>6</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>16</td>
<td>8^a</td>
<td>1:76</td>
<td>1</td>
<td>6</td>
<td>RT</td>
<td>54</td>
<td>11600</td>
<td>33700</td>
<td>NA</td>
<td>2.91</td>
<td>5:95</td>
</tr>
</tbody>
</table>

The experiments were carried out using a 2.4 mM solution of catalyst in toluene. The volume includes the volume of the ε-caprolactone. a) The catalyst was prepared in-situ and monitored by 1H NMR prior its transfer into the schlenk vessel; b) in presence of one equivalent of benzyl alcohol; c) 0.8 mmol solution of catalyst; d) according to the higher molecular weight fractions of the chromatogram; e) in CDCl$_3$, using the HOCH$_2$R end group of both polymers terminated by the R-C(O)OMe and R-C(O)-X (X = 3 or 4); f) using SEC, where “small” and “high” represent the relative integrations of the fractions after and before 20 minutes, respectively.

Complex 6 was shown to afford better yields of polycaprolactone at room temperature, or at 50°C, than 5, as can be observed in entries 1 to 6. It is believed that the larger steric hindrance of PPh$_2$ compared to SPh may play an important role in reducing the polymer yield and the activity of the catalyst. The reaction with both catalysts was slow at room temperature, since the polymer isolated yields were very low after one hour.
but the reaction proceeded more efficiently with 6 at 50°C. At higher monomer to catalyst ratios, the TOFs ranged between 6.2 and 7.1 min⁻¹ (entries 11 and 12). One limiting factor in the polymerization was the jellification of the reaction mixture at high concentration and temperature (entry 6), which occurred after 15 minutes. However, running the experiment in a more dilute solution (0.8 M) instead of a 2.4 M with 150 equivalents of CL, in order to prevent jellification, gave lower yields of isolated polymer (entries 6 and 9). The use of benzyl alcohol (PhCH₂OH) as activator for the polymerization of cyclic esters has been reported.¹⁹,²⁰ However, as shown in entry 7, the presence of the alcohol greatly reduced both the yield and the Mₙ of the polymer. The reaction between one equivalent of benzyl alcohol and catalyst 6 in benzene-d₆ did show by ¹H NMR the presence of free ligand 4, thus indicating the catalyst’s degradation in presence of PhCH₂OH.

The effect of the caprolactone concentration on the yield and Mₙ and Mₘ was assessed (entries 8 to 12). Experiments were done using catalyst 6 with 76 to 600 equivalents of CL at 50°C for one hour. Between 76 and 400 equivalents of CL, Mₙ values increased linearly with CL concentration. The yields also increased. At 600 equivalents, the trend no longer held and the Mₙ value and yield were lower than expected. This could be due to saturation of the system, since jellification of the reaction mixture occurred too rapidly and slowed down the reaction.²¹

The activity of monoaluminic catalyst 8 was also compared against its bimetallic counterpart (entries 14-16). 8 was not isolable in the solid state and was thus prepared in situ in an NMR tube prior to catalysis attempts. It was found that 8 afforded comparable yields at 50°C and higher Mₙ values compared to catalyst 6 (entries 13 and 14). However
at room temperature, the reaction was slow to start and low yields were obtained along with lower M_n values (entries 15 and 16).

Figure 5. Typical 1H NMR spectrum of polycaprolactone (entry 9) with a blow up of the resonances of the terminal groups. T1 and T2 are for the two triplets and S for the singlet.

1H NMR spectroscopy analysis of polycaprolactone

The end group analysis using NMR spectroscopy is a powerful method to obtain the molecular weight of polycaprolactones in solution. The 1H NMR spectra of the polycaprolactones isolated in the catalytic experiments were typical of the reported values, with $\delta = 4.05$ (t), 2.30 (t), 1.64 (m), and 1.37 (m). However, the end group
resonances were untypical for polycaprolactones synthesized using aluminum catalysts that are quenched with methanol. Indeed, two triplets, at 3.641 and 3.646 ppm ($J_{\text{HH}} = 5.1$ Hz), and a singlet at 3.664 ppm, were observed by 1H NMR spectroscopy (Figure 5). In all samples, the upfield triplet and the singlet were integrating in a 2:3 ratio, as would be expected for a polycaprolactone having -CH$_2$OH (triplet) and -C(O)OCH$_3$ (singlet) as end groups.21a However, no other end group could be assigned to the triplet corresponding to the -CH$_2$OH (triplet) at 3.646 ppm. After careful examination, the 1H NMR spectra of polycaprolactones having a low molecular weight did show some broad and ill defined resonances at 7.3-7.1, 4.3-4.1, and 2.6-1.1 ppm; these chemical shifts are typical for ligands 3 and 4. The 31P{1H} NMR spectrum of the polymer obtained in entry 3 using catalyst 5 did exhibit three minor overlapping resonances for ligand 3 at -15.6 and -15.9 ppm, along with major resonances between 32.2 and 31.5 ppm. These resonances are typical for the phosphine oxide analogue of 3. Therefore, quenching the reaction with methanol allows to get rid of the aluminum from the catalyst, but not of the ligand that remains bound by an amide linkage to the polymeric chain. Indeed, the NC(O)R stretching frequency was observed at 1651 cm$^{-1}$ by FTIR spectroscopy. Such amide linkage could be formed by a ROP initiated by an insertion within an aluminum-amido bond (vide infra).

The molecular weight of the polymers was calculated by integrating both methylene triplets at 3.641 and 3.646 ppm for a total of 2 protons. It can be observed that the M_n obtained by 1H NMR spectroscopy is systematically lower than the M_n observed using SEC. However, it should be noted that the difference between the M_n by NMR and SEC is much more acute with polymers having a lower M_n. With these samples, the
presence of 3 or 4, or its oxidized analogue, as an end group will artificially increase the molecular weight observed by SEC (3 has a molecular weight of 952 g/mol), whereas the 1H NMR integrations will give a much more reliable number of repetition units of the polycaprolactone.

Figure 6. MALDI-TOF spectrum of entry 3.
MALDI-TOF Analysis

One general characteristic of this catalytic system is that polydispersity indexes (PDI) are rather high at 50°C. The SEC traces clearly show the presence of two domains with different molecular weights (Figure 4). A MALDI-TOF experiment on the isolated product of entry 3 was carried out (Figure 6) to have a more reliable idea of the structure of the lower molecular weight fraction. It was possible to observe a repetition pattern starting at $m/z = 1114$ with a repetition unit of 114.3, which corresponds to the molecular weight of CL (molecular weight = 114.06, Figure ESI 2). The first value of 1114 corresponds to a unit of CL ($m/z = 114$) bound to ligand 3 where the phosphines are oxidized ($m/z = 999$) with an additional proton (H$^+$), as previously assumed by NMR spectroscopy.

In the mass spectrum of the fractions having a $m/z < 1000$, some signals could be observed that could be attributed to repeating units of CL (for example, $m/z = 596.3, 710.4, and 824.3$), but no end group could be clearly assigned. However, the presence of the oxidized analogue of 3 was clearly observed at $m/z = 1000.4$ as the main signal (expected value for 3 + H$^+$ = 1000.4), suggesting that not all of the ligands are incorporated in the polymeric chains.

In-situ study of the polymerization of ε-caprolactone

NMR scale reactions were done to gain a better understanding of the polymerization mechanism. Upon addition of 1 equivalent of CL to a solution of 6 in C$_6$D$_6$, immediate changes in the 1H NMR spectrum were visible for the aluminum
complex suggesting the complete conversion to a new species (Figure ESI 3). The methylene protons were split into 6 doublets ranging from 3.92 to 5.27 ppm, implying that the 6 no longer possessed a mirror plane in solution, as stated above, and that the hydrogen atoms were now diastereotopic. Two of the Al-Me signals were shifted upfield at -0.58 and -0.68 ppm, respectively, and signals attributed to bound CL emerged at 3.42, 2.07, 1.12, and 0.94 ppm. The fact that the three Al-Me signals were still clearly visible in the upfield region of the spectrum indicated that the ring opening insertion of CL did not occur in the Al-Me bond. These observations are in agreement with results reported by Milione et al. when using a cationic heteroscorpionate complex.23 Furthermore, the signals that shifted upfield (at -0.58 and -0.68 ppm) are reminiscent of the aluminum complex Me₂Al(μ-OCH₂CH₂NMe₂)Al(tBu)₃ having a R₂N-AlMe₂-OCH₂ core, where the AlMe₂ fragment exhibits a ¹H NMR chemical shift of -0.56 ppm.24 We therefore propose that the insertion occurs into one of the two amido-aluminium bonds of the N₂AlMe₂ four-member cycle, rather than in the N₃AlMe central core, to form the species depicted in Figure 8. The presence of the ligand bound to the isolated polymeric chain and the low reactivity of 8, as seen in the next paragraph, support this hypothesis.

After addition of one equivalent of CL to 8 in C₆D₆ almost no reaction was detected by ¹H NMR after one hour at room temperature (Figure 9). When heated at 60°C for one hour, the signals attributed to CL decreased and a new multiplet at 3.98 ppm
became more pronounced. After an additional 17 hours at 60°C, the signals attributed to CL have decreased further but conversion was still incomplete. However, the most important pieces of information were that a large amount of 8 was still present in solution, that the aluminum complex did not seem to be affected by the presence of CL, and that no new signals were attributed to an active catalyst. Whereas the exact nature of the active catalyst with precatalyst 8 could not be confirmed, it can be speculated that some species in low concentration was formed after heating the solution. Since the ligand was also observed in the polymer obtained by 8, as deduced from the series of triplet at 3.64 ppm in the isolated polymer of entry 14, two possible pathways can be imagined. First, it is possible that the CL inserts in one of the N-Al bond at a very slow rate, thus allowing polymerization by few activated species. Also, it might be possible for some residual aluminum species to form an analogue of 6, which would be the active species.
Figure 9. 1H NMR spectra of catalyst 8 in the presence of 1 equiv. of CL in benzene-d_6 after a) 5 minutes at room temperature, b) 18 hours at 60°C, and c) before the addition of CL.

Polymerization of rac-lactide

Complex 6 proved to be active for rac-lactide ROP. A first attempt at room temperature with 75 equivalents of rac-lactide afforded less than 5% yield after 5 days. A
second attempt at 100°C lead to 96% yield after 4 days. SEC analyses gave a Mₙ of 32 000 with a PDI of 1.56.

The tacticity of the polymer was determined by ¹³C{¹H} and homodecoupled ¹H NMR experiments. The resonances at 69.0 and 69.2 ppm, integrating for 4:1 and representing the methyne carbon in the ¹³C{¹H}, were attributed to the tetrads \textit{iii}, \textit{iis}, \textit{sii} and \textit{isi} (Figure ESI 4). These are the stereosequences expected in the polymerization of \textit{rac}-lactide by an achiral catalyst.²⁵ However, three weaker resonances present in the spectrum at 69.1, 69.3 and 69.4 ppm corresponding to the \textit{iss} tetrads, which cannot be normally present in polymers coming from \textit{rac}-lactide, were observed. This result implies that some transesterification or racemization reaction occurred, which have been known to induce inversion of the stereocenters.²⁴ The methyne region of the homodecoupled ¹H NMR spectrum corroborates the results obtained from the ¹³C{¹H} spectrum.

\textbf{Conclusion}

The coordination chemistry of an aminothiol and a previously reported aminophosphine ligand with aluminum was explored. With both ligands, the reaction
with two equivalents of AlMe₃ leads to the formation of bimetallic methylalane species. The reaction of one equivalent afforded monometallic complexes with one secondary amine bound to aluminum.

The reactivity of these complexes towards ε-caprolactone ROP was assessed and it was found that the bimetallic complexes 5 and 6 were active catalysts. Precatalyst 8 did exhibit some catalytic activity, but probing the reaction using ¹H NMR spectroscopy did show that the complex did not react significantly with ε-caprolactone and that the activity was probably a consequence of a minor species not observed resulting from the degradation of 8. No activator, such as benzyl alcohol, is needed for the reaction to proceed, as the site of the CL insertion on the bimetallic complexes was found to be at the N-AlMe₂ moiety, as could be demonstrated by the presence of the residual ligand bound to the isolated polymer. In the presence of the sulfide containing catalyst 6, the polymers obtained consist mainly of high molecular weight polymers, however, catalyst 5, with bulky PPh₂ groups on the functionalized arms, produced mainly oligomers. The synthesis of analogues of 5 and 6 with other functional groups and the formation of the bimetallic species are currently underway to test their catalytic activity and probe and cooperative behaviour between early and late metal systems.

Experimental Section

*Cis,cis-1,3,5-triaminocyclohexane·3HBr*²⁶ and 2-(phenylthio)benzaldehyde were prepared according to literature procedures.²⁷ Syntheses for *cis,cis-1,3,5-tetraminocyclohexane* and compounds 1 and 3 were previously reported.¹⁷ Trimethylaluminum was purchased from Sigma-Aldrich and used as received. ε-
Caprolactone was heated at 80°C with CaH₂ and distilled at 0.07 mmHg at 80°C. Dry and deoxygenated solvents were used throughout all syntheses. Toluene and pentane were distilled on sodium/benzophenone and collected under nitrogen. The reactions were carried out using usual Schlenk and glovebox methodologies. ¹H (400.0 MHz), ³¹P{H} (161.9 MHz) and ¹³C{¹H} (100.568 MHz) solution NMR spectra were recorded on a Varian Inova NMR AS400 spectrometer or on a Bruker NMR AC-300 spectrometer (¹H (300.0 MHz), ³¹P{H} (121.42 MHz) and ¹³C{¹H} (75.42 MHz). J values are given in Hz. The elemental analyses were carried out by GCL & Chemisor Laboratories.

Cis,cis-C₆H₉(N=CHC₆H₄(SPh))₃ (2)

Cis,cis-1,3,5-triaminocyclohexane (120 mg, 0.90 mmol) and 2-(phenylthio)benzaldehyde (600 mg, 2.8 mmol) were dissolved in 30 ml of anhydrous ethanol and molecular sieves (4 Å) were added. The solution was heated under reflux for 24 hours and then cooled at -35°C. A white precipitate appeared which was filtered affording a white crystalline powder (460 mg, 68 % yield). δₕ (400 MHz; C₆D₆) 8.98 (s, 3H, N=CH), 8.31 (br d, ³J_H-H = 7.7, 3H, C₆H₄), 7.30 (br d, ³J_H-H = 7.7, 3H, C₆H₄), 7.17 (m, 6H, o-SPh), 7.03-6.80 (m, 15H, m,p-SPh and C₆H₄), 3.15 (tt, ³J_H-H = 11.4, ³J_H-H = 3.5, 3H, CHN=CHC₆H₄), 2.22 (dd, ³J_H-H = 11.8 and ³J_H-H = 11.8, 3H, ax. CH₂) and 1.65 (td, ³J_H-H = 11.8 and ³J_H-H = 3.5, 3H, equ. CH₂); δc (100.57 MHz; C₆D₆) 157.3 (s, N=CH), 138.0 (s, C₆H₄), 137.4 (s, C₆H₄), 135.2 (s, i-SPh), 134.3 (s, C₆H₄), 131.0 (s, p-SPh), 129.6 (s, m-SPh), 129.0 (s, C₆H₄), 128.5 (s, C₆H₄), 128.0 (s, o-SPh), 128.7 (s, C₆H₄), 66.7 (s, CH₂) and 41.6 (s, CHN=CHC₆H₄). Elemental analysis calc. for C₄₅H₃₉N₃S₃: C, 75.27; H, 5.47; N, 5.85. Found: C, 75.01; H, 5.56; N, 5.72%.
Cis,cis-C₆H₉(NHCH₂C₆H₄SPh)₃ (4)

To a solution of 2 in 40 ml of THF (600 mg, 0.84 mmol), a suspension of LiAlH₄ (96 mg, 2.5 mmol) in 10 ml of THF was added. The suspension was stirred at room temperature for 48 hours. The reaction was then filtered to remove excess LiAlH₄ and quenched with water. The mixture was extracted with 3 x 20 ml water. The organic fraction was dried with MgSO₄ and filtered. The volatiles were removed under vacuum to yield 4 as yellow oil (530 mg, 91 % yield). δH (400 MHz; C₆D₆) 7.52 (d, 3J_H-H = 7.0, 3H, C₆H₄(SPh)), 7.37 (d, 3J_H-H = 7.7, 3H, C₆H₄(SPh)), 7.20 (m, 6H, C₆H₄(SPh)), 7.09 (t, 3J_H-H = 7.5, 3H, C₆H₄(SPh)), 6.92 (m, 12H, C₆H₄(SPh)), 3.95 (s, 6H, CHNCH₂C₆H₄), 2.23 (tt, 3J_H-H = 11.2 and 3J_H-H = 3.4, 3H, CHNCH₂C₆H₄), 2.00 (dt, 2J_H-H = 11.6 and 3J_H-H = 3.4, 3H, equ. CH₂), 0.87 (br s, 3H, CHNCH₂C₆H₄) and 0.79 (q, 2J_H-H = 11.6 and 3J_H-H = 11.6, 3H, ax. CH₂); δC (100.57 MHz; C₆D₆) 143.6 (s, C₆H₄(SPh)), 137.6 (s, C₆H₄(SPh)), 134.1 (s, C₆H₄(SPh)), 133.8 (s, C₆H₄(SPh)), 130.0 (s, C₆H₄(SPh)), 129.8 (s, C₆H₄(SPh)), 129.5 (s, C₆H₄(SPh)), 127.9 (s, C₆H₄(SPh)), 126.5 (s, C₆H₄(SPh)), 53.9 (s, CHNCH₂C₆H₄), 49.5 (s, CHNCH₂C₆H₄) and 41.0 (s, CH₂). One aromatic signal is hidden beneath the solvent peak. Elemental analysis calc. for C₄₃H₄₅N₃S₃: C, 74.75; H, 6.26; N, 5.80. Found: C, 74.36; H, 6.52; N, 5.77%.

[cis,cis-C₆H₉(NCH₂C₆H₄-0-PPh₂)₃-κ⁵μ²N]Al₂Me₃ (5)
In a glove box filled with nitrogen, 3 (300 mg, 0.32 mmol) and trimethylaluminum (45 mg, 0.63 mmol) were mixed in 10 ml of toluene. The Schlenk flask was sealed with a glass stopper and the solution heated at 80°C for 72 hours after which the volatiles were removed under vacuum. The crude product was dried under vacuum at 40°C for 2 hours to assure the removal of all excess AlMe₃. In the glove box, the crude product was washed with several portions of pentane to afford a white flaky powder (163 mg, 53% yield). δH (400 MHz; C₆D₆) 8.09 (dd, 3JH-H = 7.1 and 3JH-P = 4.8, 1H), 7.63 (dd, 3JH-H = 7.7 and 3JH-P = 4.6, 2H), 7.38 (m, 15H), 7.18-6.99 (m, 21H), 6.93 (dt, 3JH-H = 7.6 and 3JH-P = 1.1, 3H), 4.64 (dd, 4JH-P = 4.5 and 2JH-H = 14.2, 2H), 4.52 (d, 4JH-P = 2.8, 2H), 4.25 (d, 2JH-H = 14.2, 2H), 3.50 (s, 2H), 3.18 (d, 2JH-H = 15.2, 1H), 2.79 (s, 1H), 2.48 (d, 2JH-H = 13.8, 2H), 1.15 (td, 3JH-H = 3.6 and 2JH-H = 13.8, 2H), 1.04 (d, 2JH-H = 15.2, 1H), -0.12 (s, Al-Me, 3H), -0.22 (s, Al-Me, 3H) and -0.52 (s, Al-Me, 3H); δP (121.422 MHz; C₆D₆) -14.1 and -14.9; δC (100.57 MHz; C₆D₆) 149.3 (d, 1JC-P = 20.9), 144.0 (d, 1JC-P = 24.8), 138.0 (m), 137.3 (d, 3JC-P = 10.5), 137.2 (d, 3JC-P = 10.5), 136.0 (d, 3JC-P = 14.4), 134.3 (m), 133.1 (s), 129.7-129.1 (m), 126.6 (s), 54.7 (d, 5JC-P = 2.2), 51.5 (d, 3JC-P = 24.0), 50.9 (s), 49.6 (d, 3JC-P = 22.8), 35.7 (d, 5JC-P = 5.2), 35.3 (s), -0.6 (s, Al-C), -5.2 (s, Al-C) and -11.5 (s, Al-C). Elemental analysis calc. for C₆₆H₆₆Al₂N₃P₃: C, 75.56; H, 6.30; N, 4.01. Found: C, 75.90; H, 6.58; N, 4.00%.

\[\text{cis,cis-C}_6\text{H}_9(\text{NCH}_2\text{C}_6\text{H}_4-o-\text{SPh})_3-\kappa^5\mu^2N\text{Al}_2\text{Me}_3 \text{ (6)}\]

In a schlenk flask with a Teflon stopper, 4 (420 mg, 0.58 mmol) was dissolved in 10 ml toluene. 83 mg (1.2 mmol) of AlMe₃ were added and the solution heated at 100°C for 24h. The solution was evaporated and dried under vacuum for 2 hours. The resulting
yellow oil was then dissolved in 10 ml toluene and 64 mg (0.63 mmol) of triethylamine was added. The reaction was stirred at ambient temperature for 15 minutes after which the volatile materials were removed. The crude product was washed with 5 portions of 2 ml of pentane. Crystals were grown from slow evaporation of a pentane solution (238 mg, 50 % yield). δ_H (400 MHz; C_6D_6) 7.68 (dd, ^3J_H-H = 7.6 and ^3J_H-P = 1.2, 1H), 7.55 (dd, ^3J_H-H = 7.7 and ^3J_H-H = 1.4, 2H), 7.37 (dd, ^3J_H-H = 7.8 and ^3J_H-H = 1.2, 1H), 7.31 (m, 4H), 7.19-7.14 (m, 4H), 7.05 (td, ^3J_H-H = 7.6 and ^3J_H-H = 1.4, 2H), 6.95 (m, 8H), 6.91-6.84 (m, 6H), 4.50 (d, ^2J_H-H = 13.9, 2H), 4.40 (s, 2H), 4.15 (d, ^2J_H-H = 13.9, 2H), 3.28 (s, 2H), 3.00 (dt, ^2J_H-H = 15.2 and ^3J_H-H = 2.5, 1H), 2.72 (s, 1H), 2.43 (d, ^2J_H-H = 14.0, 2H), 1.19 (dt, ^2J_H-H = 14.0 and ^3J_H-H = 3.7, 2H), 0.94 (dt, ^2J_H-H = 15.2 and ^3J_H-H = 1.9 Hz, 1H), -0.15 (s, Al-Me, 3H), -0.26 (s, Al-Me, 3H) and -0.32 (s, Al-Me, 3H); δ_C (100.57 MHz; C_6D_6) 145.8 (s), 141.2 (s), 137.6 (s), 137.2 (s), 135.5 (s), 134.8 (s), 134.3 (s), 133.0 (s), 131.3 (s), 130.7 (s), 129.8 (s), 129.5 (s), 129.5 (s), 129.4 (s), 128.8 (s), 128.8 (s), 127.5 (s), 127.2 (s), 126.7 (s), 126.5 (s), 54.5 (s), 52.0 (s), 50.5 (s), 49.3 (s), 35.4 (s), 35.1 (s), -0.8 (s, AlMe), -5.0 (s, AlMe) and -11.3 (s, AlMe). Elemental analysis calc. for C_{48}H_{51}Al_{2}N_{3}S_{3}: C, 70.23; H, 6.22; N, 5.12. Found: C, 69.80; H, 6.59; N, 5.50%.

[cis,cis-C_6H_9(NCH_2C_6H_4-o-PPh_2-κN)_2(NHCH_2C_6H_4-o-PPh_2-κN)]AlMe (7)

In a glove box filled with nitrogen, 3 (140 mg, 0.15 mmol) and AlMe_3 (11 mg, 0.15 mmol) were dissolved in 2 ml of toluene. The solution was heated at 100°C for 48 hours. The volatiles were removed under vacuum to afford a white powder (NMR yield > 98%). Small impurities prevented from doing an elemental analysis. δ_H (400 MHz; C_6D_6) 8.18 (dd, ^3J_H-H = 7.2 and ^3J_H-P = 4.5, 1H), 8.12 (dd, ^3J_H-H = 7.7 and ^3J_H-P = 4.4, 1H), 7.47- 6.88
(m, 40H), 4.80 (dd, 2J_H-H = 15.3 and 4J_H-P = 3.3, 1H), 4.57 (d, 2J_H-H = 15.3, 1H), 4.42 (dd, 2J_H-H = 15.2 and 4J_H-P = 1.7, 1H), 4.31 (dd, 2J_H-H = 15.3 and 4J_H-P = 2.9, 1H), 4.27 (dd, 2J_H-H = 11.3 and 3J_H-H = 4.7, 1H), 3.92 (dd, 2J_H-H = 14.1 and 3J_H-H = 9.8, 1H), 3.56 (dd, 3J_H-H = 14.9 and 3J_H-H = 7.1, 1H, N-H), 3.05 (br, 1H), 2.92 (br, 1H), 2.86 (br, 1H), 2.45 (d, 3J_H-H = 12.4, 1H), 2.33 (d, 3J_H-H = 14.1, 1H), 1.48 (tt, 3J_H-H = 12.2 and 3J_H-H = 3.6, 1H), 1.45 (d, 3J_H-H = 15.0, 1H), 1.24 (dt, 3J_H-H = 13.8 and 3J_H-H = 3.1, 1H), 0.97 (dt, 3J_H-H = 14.3 and 3J_H-H = 3.0, 1H) and -0.87 (s, 3H, AlMe). \[\delta_p (121.422 \text{ MHz}; \text{C}_6\text{D}_6) \text{-} 13.8 \text{ and } -17.0; \delta_C (100.57 \text{ MHz}; \text{C}_6\text{D}_6) 150.0 \text{ (d, } \text{1J}_{C-P} = 20.9), 149.8 \text{ (d, } \text{1J}_{C-P} = 20.9), 139.7 \text{ (d, } \text{1J}_{C-P} = 25.0), 138.7 \text{ (d, } \text{2J}_{C-P} = 12.5), 138.6 \text{ (d, } \text{2J}_{C-P} = 11.8), 138.3 \text{ (d, } \text{1J}_{C-P} = 11.7), 138.3 \text{ (d, } \text{1J}_{C-P} = 12.0), 137.2 \text{ (d, } \text{2J}_{C-P} = 13.9), 135.1 \text{ (s), 134.4 (s), 133.3 (s), 133.3 (s), 132.3 (d, } \text{3J}_{C-P} = 5.8), 129.9 \text{ (s), 129.4 (s), 129.1 (s), 128.8 (s), 126.6 (s), 53.4 (s), 53.3 (s), 53.2 (d, } \text{3J}_{C-P} = 25.0), 53.0 \text{ (s), 52.3 (d, } \text{3J}_{C-P} = 23.0), 49.7 \text{ (d, } \text{3J}_{C-P} = 16.0), 38.1 \text{ (s), 36.6 (s), 29.1 (s) and } -15.8 \text{ (s, AlMe). Some aromatic signals are hidden beneath the solvent peak.}

[cis,cis-C_{8}H_{9}(NCH_{2}C_{6}H_{4}-o-SPh-κN)_{2}(NHCH_{2}C_{6}H_{4}-o-SPh-κN)]AlMe (8)

In a glove box filled with nitrogen, compound 4 (140 mg, 0.15 mmol) and AlMe_{3} (11 mg, 0.15 mmol) were dissolved in 2 ml of toluene. The solution was heated at 100°C for 48 hours. The volatiles were removed under vacuum to afford an off-white powder (NMR yield > 98%). Small impurities prevented from doing an elemental analysis. \[\delta_h (400 \text{ MHz; C}_{6}\text{D}_{6}) 8.00 \text{ (d, } \text{3J}_{H-H} = 7.3, 1H), 7.85 \text{ (d, } \text{3J}_{H-H} = 7.0, 1H), 7.39-7.45 \text{ (m, 25H), 4.62 \text{ (d, } \text{2J}_{H-H} = 15.2, 1H), 4.50 \text{ (d, } \text{2J}_{H-H} = 15.3, 1H), 4.32 \text{ (d, } \text{2J}_{H-H} = 14.8, 1H), 4.26 \text{ (d, } \text{2J}_{H-H} = 15.1, 1H), 4.10 \text{ (dd, } \text{2J}_{H-H} = 14.0 \text{ and } \text{3J}_{H-H} = 5.2, 1H), 3.81 \text{ (dd, } \text{2J}_{H-H} = 14.1 \text{ and } \text{3J}_{H-H} = 9.5, 1H), 3.62 \text{ (dd, } \text{3J}_{H-H} = 8.0 \text{ and } \text{3J}_{H-H} = 6.3, 1H, N-H), 3.01 \text{ (br, 1H), 2.90 (br, 1H), 2.82 (s, 3H, AlMe). Some aromatic signals are hidden beneath the solvent peak.}
2.80 (br, 1H), 2.49 (d, \(^3J_{H-H} = 12.7\), 1H), 2.28 (d, \(^3J_{H-H} = 14.5\), 1H), 1.48 (tt, \(^3J_{H-H} = 12.2\) and \(^3J_{H-H} = 3.6\) Hz, 1H), 1.45 (d, \(^3J_{H-H} = 15.0\), 1H), 1.24 (dt, \(^3J_{H-H} = 13.8\) and \(^3J_{H-H} = 3.1\), 1H), 0.97 (dt, \(^3J_{H-H} = 14.3\) and \(^3J_{H-H} = 3.0\), 1H), -0.82 (s, 3H, AlMe); \(\delta_C\) (100.57 MHz; C\(_6\)D\(_6\)) 147.0 (s), 146.6(s), 143.6 (s), 138.2 (s), 137.9 (s), 136.5 (s), 136.0 (s), 134.6 (s), 134.1 (s), 133.3 (s), 133.0 (s), 132.8 (s), 130.6 (s), 130.1 (s), 129.6 (s), 129.3 (s), 129.1 (s), 128.7 (s), 127.2 (s), 127.1 (s), 126.4 (s), 126.2 (s), 53.8 (s), 53.7 (s), 53.4 (s), 53.3 (s), 53.2 (s), 53.0 (s), 49.7 (s), 49.4 (s), 41.6 (s), 37.9 (s), 37.3 (s), 29.4 (s), -15.7 (s). Some aromatic signals are hidden beneath the solvent peak.

Table 2. Crystallographic information for 6.

<table>
<thead>
<tr>
<th></th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>C({48})H({51})Al(_2)N(_3)S(_3)</td>
</tr>
<tr>
<td>fw</td>
<td>820.06</td>
</tr>
<tr>
<td>size (mm)</td>
<td>0.09x0.05x0.02</td>
</tr>
<tr>
<td>cryst syst</td>
<td>Triclinic</td>
</tr>
<tr>
<td>space group</td>
<td>P-1</td>
</tr>
<tr>
<td>a (Å)</td>
<td>13.1455(11)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>16.7733(14)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>20.6807(17)</td>
</tr>
<tr>
<td>(\alpha) (deg)</td>
<td>100.937(1)</td>
</tr>
<tr>
<td>(\beta) (deg)</td>
<td>99.373(1)</td>
</tr>
<tr>
<td>(\gamma) (deg)</td>
<td>94.655(1)</td>
</tr>
<tr>
<td>(V) (Å(^3))</td>
<td>4387.7(6)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>wavelength (Å)</td>
<td>0.71073</td>
</tr>
<tr>
<td>(D_{calc}) (g·cm(^{-3}))</td>
<td>1.241</td>
</tr>
<tr>
<td>(F_{000})</td>
<td>1736</td>
</tr>
<tr>
<td>Temp (K)</td>
<td>200(2)</td>
</tr>
<tr>
<td>no. of unique/total reflns</td>
<td>15420/44407</td>
</tr>
<tr>
<td>(GOF)</td>
<td>1.013</td>
</tr>
<tr>
<td>(R_{int})</td>
<td>0.0301</td>
</tr>
<tr>
<td>final (R) indices ([I > 2\sigma(I)])</td>
<td>0.0391</td>
</tr>
</tbody>
</table>
Crystallographic Structural Determination

Crystallographic data are reported in Table 2. Single crystals were coated with Paratone-N oil, mounted using a glass fibre and frozen in the cold nitrogen stream of the goniometer. The data were collected on a Bruker SMART APEX II diffractometer. The data were reduced (SAINT)28 and corrected for absorption (SADABS).29 The structure was solved and refined using SHELXS-97 and SHELXL-97.30 All non-H atoms were refined anisotropically. The hydrogen atoms were placed at idealized positions. Neutral atom scattering factors were taken from the International Tables for X-Ray Crystallography.31 All calculations and drawings were performed using the SHELXTL package.32

Polymerization procedures. The reaction mixtures were prepared in a glove box. In a Schlenk tube with a magnetic stir bar, a solution of the catalyst in toluene was added to the monomer in toluene in order to obtain a 2.4 mM solution, unless stated otherwise. The solutions were stirred for a specific period of time at room temperature or at 50 °C. The reaction was quenched by adding 1 mL of dichloromethane and pouring the solution in cold methanol. The precipitate was filtered and dried under vacuum. A fine suspension of the polymer in methanol could also be centrifuged at 7000 rpm at 4°C for 30 min. Polymerization of rac-lactide was performed in a similar fashion in 5 ml of toluene and heated at 100°C for four days. The reaction was quenched by pouring the solution into slightly acidic cold methanol at pH 5. No significant reactivity was observed with AlMe\textsubscript{3} and CL. The precipitate was filtered and dried under vacuum.
SEC experiments. The SEC measurements were performed in chloroform on a Waters apparatus with 515 HPLC pumps and a Waters Associates 441 detector and two Jordi columns. M_n and M_w were calculated using polystyrene standards by integrating the domain corresponding to the larger polymers.

MALDI-TOF experiments. The experiments were carried out at the Mass Spectrometry service at the Durham University Chemistry department. The sample was prepared by first solubilising a small portion (~1mg) in acetonitrile (1mL). A ten fold dilution of this was made in a solution MALDI matrix (saturated α-Cyano-4-hydroxy cinnamic acid prepared in 0.1% trifluoroacetic acid:acetonitrile (2:1)). 1µL of this was spotted onto a ground steel target prior to running on the MALDI ToF instrument (Autoflex MALDI ToF/ToF, Bruker, Coventry, UK).

Acknowledgments

F.-G. Fontaine is grateful to NSERC (Canada), CFI (Canada), FQRNT (Québec), and Université Laval for financial support. M.-H. Thibault acknowledges FQRNT for a scholarship. We acknowledge Prof. F. H. Schaper and Prof. P. Hayes for helpful discussions. We acknowledge Prof. S. A. Westcott, J. Boudreau, S. S. Barnes, and B. Macha for their thoughtful input.

Supporting Information Available: Crystallographic data have been deposited with CCDC (CCDC No. 755385 for 6). These data can be obtained upon request from the
Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK, e-mail: deposit@ccdc.cam.ac.uk, or via the internet at www.ccdc.cam.ac.uk.
References

Some leading references:

One of the referee suggested that the jellification of the solution was certainly due to transesterification reactions. Although it was not possible to confirm it, it is a likely reason for such change in the viscosity.

28 SAINT Version 7.07a; Bruker AXS Inc.: Madison, WI, 2003. Sheldrick, G. M.

30 Sheldrick, G. M. SHELXS-97 and SHELXL-97. Programs for the refinement of crystal structures; University of Gottingen: Germany, 1997.

TOC graphic
Abstract

The addition of 1 and 2 equivalents of AlMe\textsubscript{3} to \textit{cis,cis}-C\textsubscript{6}H\textsubscript{9}(NHCH\textsubscript{2}C\textsubscript{6}H\textsubscript{4}-\textit{o}-R)\textsubscript{3} (R = PPh\textsubscript{2} (3) and SPh (4)) gives complexes [\textit{cis,cis}-C\textsubscript{6}H\textsubscript{9}(NCH\textsubscript{2}C\textsubscript{6}H\textsubscript{4}-\textit{o}-SPh-κ\textit{N})\textsubscript{2}(NHCH\textsubscript{2}C\textsubscript{6}H\textsubscript{4}-\textit{o}-R-κ\textit{N})]AlMe (R = PPh\textsubscript{2} (7) and SPh (8)) and [\textit{cis,cis}-C\textsubscript{6}H\textsubscript{9}(NCH\textsubscript{2}C\textsubscript{6}H\textsubscript{4}-\textit{o}-R)\textsubscript{3}-κ\textsubscript{5}\textmu\textsubscript{2}\textit{N}]Al\textsubscript{2}Me\textsubscript{3} (R = PPh\textsubscript{2} (5) and SPh (6)), respectively. The bimetallic complexes are active in the polymerization of ε-caprolactone and \textit{rac}-lactide whereas the monometallic complexes are not, although no cooperative behaviour is observed between the two aluminum atoms of 5 and 6. The polycaprolactones samples, which were characterized using 1H NMR, MALDI-TOF, and SEC, show the presence of residual ligand 3 or 4 bound to the polymer and the \textit{in situ} NMR studies do confirm that the insertion occurs into an Al-N bond.