Rôle des MAPK dans la migration des lymphocytes Th17 à travers le collagène tridimensionnel (3D)

Mémoire

Maleck Kadiri

Maitrise en microbiologie-immunologie
Maitre ès sciences (M. Sc.)

Québec, Canada

© Maleck Kadiri, 2017
Rôle des MAPK dans la migration des lymphocytes Th17 à travers le collagène tridimensionnel (3D).

Mémoire

Maleck Kadiri

Sous la direction de :

Fawzi Aoudjit, directeur de recherche
RÉSUMÉ

La migration des lymphocytes T à travers la matrice extracellulaire (MEC) est un événement clé dans la réponse immune adaptative et dans les maladies inflammatoires. Bien que les mécanismes de migration trans-endothéliale soient bien étudiés, ceux impliqués dans la migration à travers la MEC du tissu interstitiel sont encore peu connus.

Au laboratoire, on s’intéresse aux lymphocytes Th17 du fait de leur rôle important dans le développement des maladies auto-immunes. Nous avons récemment montré que le récepteur à domaine discoïdine de type 1 (DDR1), qui lie le collagène, est important pour la migration des Th17 à travers le collagène de type I et également in vivo dans le modèle de la poche d’air. Par ailleurs DDR1 active la voie Rho/ROCK/MAPK/ERK qui est essentielle à la motilité des Th17.

Dans cette étude, nous avons investigué l’implication des voies MAPK p38 et JNK dans la migration des lymphocytes Th17 à travers le collagène de type I qui est le constituant majeur de la MEC du tissu interstitiel. Nous avons trouvé que la voie p38 est nécessaire à la migration des Th17 à travers le collagène tridimensionnel (3D), et que cette voie est activée par le récepteur DDR1. Ainsi, ces résultats suggèrent que la voie DDR1/MAPK p38 pourrait constituer une cible thérapeutique importante pour le traitement des maladies auto-immunes dépendantes des lymphocytes Th17.
Table des matières

Résumé...iii
Table des matières ...iv
Liste des figures ...vii
Liste des abréviations ..viii
Remerciements ...xi
Avant-propos ..xii

Chapitre I : Introduction ... 1
1. Les lymphocytes T .. 1
 1.1 Le récepteur des lymphocytes T .. 3
2. Les lymphocytes T auxiliaires .. 4
 2.1 Les Th1 .. 5
 2.2 Les Th2 .. 5
 2.4 Les Th9 .. 7
 2.5 Les Th folliculaires .. 7
 2.6 Les lymphocytes Th17 ... 8
 2.6.1 Rôle de l’IL-17 ... 9
3. Les lymphocytes Th17 dans les maladies auto-immunes ... 10
4. Migration des lymphocytes Th17 aux sites inflammatoire 11
 4.1 La migration trans-endothéliale .. 12
 4.2 La migration interstitielle .. 13
 4.3 La matrice extracellulaire ... 13
 4.4 Mécanismes de migration interstitielle ... 14
4.4.1 Le mode mésenchymale .. 15
4.4.2 Le mode amiboïde .. 18

5. Les récepteurs aux collagènes chez les lymphocytes T .. 20
5.1 Les intégrines .. 20
 5.2.1 Expression et fonctions des DDRs ... 23

6. Migration cellulaire et signalisation intracellulaire .. 25
6.1 La famille Rho ... 26
6.2 Les MAPK ... 27

Chapitre II : La migration des lymphocytes Th17 humain dans le collagène tridimensionnel implique la voie MAPK/p38 ... 31

1. Résumé ... 31
2. Abstract .. 33
3. Introduction ... 34

4. Materials and methods .. 35
 4.1 Reagents and antibodies ... 35
 4.2 Human Th17 differentiation ... 36
 4.3 Cell migration assays ... 36
 4.4 Flow cytometry analysis ... 37
 4.5 siRNA transfection ... 37
 4.6 Western blot ... 38
 4.7 Statistical analysis .. 38

5. Results ... 38
 5.1 3D collagen activates p38 MAPK .. 38
 5.2 p38 activity is required for Th17 cell migration in 3D collagen 39
5.3 JNK is dispensable for Th17 migration ... 40

5.4 DDR1 is involved in p38 MAPK activation and migration 40

6. Discussion ... 41

7. References ... 43

8. Figures and legends ... 47

Chapitre III : Discussion ... 54

Chapitre IV : Références bibliographiques .. 59
Liste des figures

Schéma 1 : différenciation des lymphocytes T auxiliaires .. 4
Schéma 2 : étapes séquentielles de la transmigration ... 13
Schéma 3 : la migration mésenchymale des cellules dans un environnement 3D. 17
Schéma 4 : La migration amiboïde des cellules dans un environnement 3D. 19
Schéma 5 : Structure des différents récepteurs DDR. ... 25
Schéma 6 : Modèle de migration des Th17 à travers le collagène 3D. 56
Liste des abréviations

3D : tridimensionnel

Arp2/3 : protéine 2/3 reliée à l’actine (Actin Related Protein 2/3)

CPA : Cellules présentatrices d’antigène

DDR : récepteur à domaine discoïdine (Discoidin Domain Receptor)

EGF : facteur de croissance épidermique (Epidermal Growth Factor)

GAP : protéine activatrice des GTPases (GTPase-Activating Protein)

GDP : Guanosine diphosphate

Glycam 1 : Glycosylation-dependent cell adhesion molecule-1.

GTP : Guanosine triphosphate

IFN-γ : Interféron-γ

Ig : Immunoglobuline

IL : Interleukine

ITAM : Motif d’activation des immuno-récepteurs via une tyrosine (Immunoreceptor Tyrosine-based Activation Motif)

iTreg : Treg induit (Inducible Treg)

JNK : Kinase de c-Jun en N-terminale (c-Jun N-terminal kinase)

LFA-1 : Antigène associé à la fonction lymphocytaire (Lymphocyte function-associated antigen)

MAPK : Protéine kinase à action mitogène (Mitogen Activated Protein Kinases)

MEC : Matrice extracellulaire

MLC : chaine légère de la myosine (Myosin Light-Chain)
MLCK : kinase de la chaîne légère de la myosine (myosin light chain kinase)

MMP : Métalloprotéinase

NF-AT : Facteur de transcription des lymphocytes T activés

NF-κB : Facteur nucléaire kappa B

NK : Cellules « tueuses naturelles » (Natural Killer)

p38 : protéine 38

PI3K : Kinase de phosphatidyl-inositois 3

PIP3 : Phosphatidylinositol 3,4,5-trisphosphate

PSGL-1 : ligand de la glycoprotéine P-sélectine (P-selectine glycoprotein ligand 1)

RANK : Récepteur activateur du facteur de transcription NF-κB

RANKL : Ligand du récepteur activateur du facteur de transcription NF-κB

RORγt : Récepteur orphelin apparenté à RAR c (RAR-Related Orphan Receptor c)

RTK : Récepteur Tyrosine Kinase

STAT : Transmetteurs et activateurs de signaux de transcription (Signal Transducers and Activators of Transcription)

TCR : Récepteur des lymphocytes T (T-cell receptor)

Tfh : Lymphocyte T folliculaire auxiliaire

TGF : Facteur de croissance tumoral (Tumor Growth actor)

TGF-β : Facteur de croissance transformant β (Transforming Growth Factor β)

Th : T auxiliaire (T helper)
TNF : Facteur de nécrose des tumeurs (Tumor Necrosis Factor)

Treg : Lymphocyte T régulateur

VCAM-1 : Molécule d'adhésion cellulaire vasculaire 1 (Cellular Adhesion Molecule 1)

VLA : Antigène très tardif (Very Late Antigen)

WASP : protéine du syndrome de Wiskott-Aldrich (Wiskott-Aldrich Syndrom Protein)

WAVE : protéines verproline homologues de la famille WASP (WASP-family verprolin-homologous protein)
Remerciements

En premier lieu, je voudrais remercier mon directeur de recherche, le docteur Fawzi Aoudjit, de m’avoir accueilli dans son laboratoire, de son encadrement, ses bons conseils et ses encouragements tout au long de maîtrise. Je lui témoigne toute ma reconnaissance. Ainsi qu’aux membres de son équipe pour leurs soutiens et précieux conseils incluant le Dr Mohamed-Amine El Azreq, Dr Marc Boisvert et Sofiane Berrezouane.

Merci à également à tous les amis et collègues du centre de recherche du CHU de Québec que j’ai côtoyé durant ces deux années. Je ne vous oublierai jamais.

Merci à mes parents d’avoir fait de moi ce que je suis, et merci à mon amoureux de rendre ma vie aussi agréable.
Avant-propos

Le Dr Fawzi Aoudjit a conçu et dirigé le projet de recherche. Il a participé à l’analyse des données, la rédaction, et à la correction de l’article.

L’article qui constitue le chapitre II est intitulé Human Th17 migration in three-dimensional collagen involves p38 MAPK. Il est présentement en révision pour le “Journal of Cellular Biochemistry”.

Dans cet article, j’ai réalisé la majorité des manipulations qui ont mené aux figures présentées. J’ai participé à la planification des expérimentations et à l’analyse des résultats ainsi qu’à la rédaction et la correction du manuscrit. Le Dr Amine El Azreq et Sofiane Berrezouane ont participé aux manipulations, rédaction et correction du manuscrit.
Chapitre I : Introduction

Le système immunitaire est un ensemble de cellules qui interagissent entre elles afin de défendre l’organisme contre l’invasion des pathogènes présents dans l’environnement. L’immunité innée représente la première ligne de défense de l’organisme, et repose essentiellement sur les cellules myéloïdes comme les macrophages, neutrophiles et cellules dendritiques.

L’immunité adaptative est quant à elle mise en place pour éliminer de façon spécifique l’agent pathogène. La réponse est orchestrée principalement par les lymphocytes T et B. Les lymphocytes T se divisent eux aussi en deux types, soit les lymphocytes T auxiliaires (CD4+) et cytotoxiques (CD8+). Les lymphocytes T auxiliaires jouent un rôle important dans la réponse immune spécifique et sont également impliqués dans les réponses inflammatoires. Suite à leur activation, ils migrent vers les sites inflammatoires et pour ce faire ils doivent traverser la barrière endothéliale par transmigration endothéliale et ensuite le tissu interstitiel pour se localiser au niveau du site inflammatoire. Bien que les mécanismes impliqués dans la transmigration endothéliale soient bien étudiés, ceux impliqués dans la migration à travers le tissu interstitiel restent encore peuadressés.

Dans mon travail de maîtrise, j’ai étudié comment le récepteur à domaine discoïdine de type 1 (récepteur au collagène fibrillaire) favorise la migration des lymphocytes Th17, vu le rôle de ces cellules dans le développement de plusieurs maladies auto-immunes et inflammatoires.

1. Les lymphocytes T

Les lymphocytes T sont considérés comme un élément clé du système immunitaire adaptatif. Ils participent à l’élimination d’une myriade de pathogènes (virus, bactéries, parasites) ainsi que des cellules tumorales. Paradoxalement, ils sont aussi impliqués dans les maladies inflammatoires et auto-immunes.
Les lymphocytes T CD8+ aussi appelés cytotoxiques sont responsables de l’élimination des cellules infectées par des pathogènes intracellulaires. Cette élimination peut intervenir de deux manières différentes : d’une manière directe en secrétant la perforine et granzyme B causant ainsi la lyse de la cellule infectée. D’une manière indirecte via la sécrétion de TNFα et IFNγ, ou par le biais des récepteurs de mort cellulaire. [1].

Quant aux lymphocytes T CD4+ aussi appelés auxiliaires, ils participent à la réponse immune indirectement via la sécrétion de cytokines spécifiques qui activeront les autres cellules du système immunitaire [2].

Les lymphocytes T dérivent de cellules souches hématopoïétiques provenant de la moëlle osseuse. Ces cellules quittent la moëlle osseuse pour atteindre le thymus qui est le lieu de leur maturation.

Une fois générés au niveau du thymus, les lymphocytes T migrent vers les organes lymphoïdes secondaires (OLS) via la circulation sanguine. Ces organes sont le site de la reconnaissance antigénique. Au niveau de ces compartiments, les lymphocytes T mature naïfs rencontrent l’antigène (Ag) présenté par les cellules présentatrices d’Ag (CPA). Cette rencontre est dépendante du TCR et des molécules de CMH dont la classe correspond au type de lymphocytes T, et aboutit à l’activation spécifique des clones de lymphocytes T [3].

L’activation des lymphocytes T naïfs nécessite deux signaux. Le premier signal est l’engagement du TCR avec le CMH II. Cette interaction est consolidée par la liaison des corécepteurs le CD4 ou CD8 dépendamment du type de lymphocytes T [4]. Le premier signal n’est pas suffisant pour une activation efficace. Pour ce faire un deuxième signal dit de costimulation est nécessaire. Ce signal est indispensable pour prévenir l’anergie ou l’apoptose des lymphocytes T [5].

La molécule de costimulation principale exprimée par les lymphocytes T est le CD28. Ses deux ligands le CD80 et CD86, aussi appelées B7.1 et B7.2, sont exprimées par les CPAs, comme les cellules dendritiques [2]. Toutefois, il existe d’autres molécules de costimulation exprimées par les lymphocytes T telle que les récepteurs de la famille du TNF (CD27, 4-1BB et OX-40) [6], et le ICOS (Inducible co-stimulator) [7].
L’ensemble de ces signaux permet l’activation, la prolifération et la différenciation des lymphocytes T naïfs.

1.1 Le récepteur des lymphocytes T

Le TCR est un récepteur transmembranaire de la famille des immunoglobulines qui est exprimé à la surface des lymphocytes T CD4+ et CD8+. Il permet la reconnaissance des Ags associés aux molécules de CMH de classe I ou II.

Ce récepteur est un hétérodimère constitué de deux sous unités αβ ou γδ. Le dimère αβ est le plus commun et est exprimé à la surface de la majorité des lymphocytes T circulants [8]. Quant au dimère γδ, il est exprimé sur une fraction de lymphocytes T (10%) [9] et contrairement au TCR conventionnel (αβ), le γδ peut reconnaître les Ags indépendamment du CMH [10].

Telles les immunoglobulines, le TCR possède trois régions : une région variable responsable de la spécificité de l’Ag, une région constante qui permet l’ancrage à la membrane, et une région intracellulaire dépourvue d’activité enzymatique [11]. Pour pouvoir transmettre une signalisation intracellulaire et activer le lymphocyte T, le TCR s’associe à un complexe moléculaire, le CD3 [12].

Le CD3 est un complexe moléculaire faisant partie de la famille des immunoglobulines, il est constitué de deux hétérodimères γε, δγ et d’un homodimère ζζ [13]. Les sous-unités γ et δ possèdent un long domaine extracellulaire et une région intracellulaire portant un seul domaine ITAM (Immunoreceptor Tyrosine-based Activation Motif). La chaîne ζ possède un court domaine extracellulaire et trois motifs ITAMs [14].

Ces motifs ITAMs induisent une signalisation intracellulaire qui permet le recrutement de molécules adaptatrices, et ainsi l’activation, la production de cytokines, la prolifération et la survie des lymphocytes T naïfs [15].
2. Les lymphocytes T auxiliaires

Les lymphocytes T auxiliaires jouent un rôle central dans l’orchestration de la réponse immune acquise, mais aussi dans le développement des maladies auto-immunes. On distingue plusieurs phénotypes de lymphocytes T auxiliaires : Th1, Th2, Th9, Treg, Thf et Th17. La différenciation des lymphocytes T dépend de plusieurs facteurs dont la nature de l’Ag et le type de cytokines présents dans le milieu (schéma 1).

Schéma 1 : différenciation des lymphocytes T auxiliaires.

La différenciation des lymphocytes T auxiliaires en plusieurs phénotypes dépend de la présence de certaines cytokines spécifiques [encadré] et ils sont caractérisés par l’expression de certains facteurs de transcriptions majeurs qui régulent leurs différenciations. Inspiré de [16,17].
2.1 Les Th1

Les lymphocytes Th1 sont une sous-population associée à l’immunité cellulaire. Ils sont activés en réponse aux pathogènes intracellulaires tels que *Leishmania Major* ou *Listeria Monocytogenes* [16]. Ils sont aussi impliqués dans le développement de plusieurs maladies auto-免疫es telle que la sclérose en plaque ou l’arthrite rhumatoïde [18].

Les Th1 participent à la réponse immune en produisant l’IFNγ et le TNF [19]. Ces cytokines permettent l’activation des macrophages et des lymphocytes cytotoxiques ce qui permet la destruction des cellules infectées. Ces mêmes cytokines induisent aussi un changement de classe d’immunoglobuline chez les cellules B. Ces dernières produiront alors des IgG qui activeront le complément ou opsoniseront les cellules infectées et favoriseront leur phagocytose [20].

Les Th1 se différencient en présence de l’IL-12 et l’IFNγ [2]. Elles initient une signalisation intracellulaire nécessaire pour le développement et l’établissement du phénotype. Cette signalisation est régulée par deux facteurs de transcription majeurs, t-bet et STAT1 [16].

Ces facteurs règulent l’expression de plusieurs gènes, tels que l’IFN-γ et l’expression de certains récepteurs de chimioïkine dont CXCR3 et CCR5 [21,22]. De plus, le t-bet vient également inhiber la différenciation en d’autres sous-populations lymphocytaires, contribuant ainsi à établir un phénotype stable [23].

2.2 Les Th2

Les Th2 sont impliqués dans la réponse humorale contre une myriade de pathogènes extracellulaires incluant les helminthes et les nématodes [16]. Ils sont principalement connus pour leur rôle dans l’inflammation allergique et l’asthme [18].

Ce phénotype de lymphocyte T auxiliaire participe à la réponse immune par la production de plusieurs cytokines dont l’IL-4, l’IL-5 et l’IL-13 [24]. Ces cytokines peuvent activer les lymphocytes B et augmenter la production d’anticorps, principalement de l’IgG1 et l’IgE. [25]. Ce qui permet l’élimination des pathogènes par phagocytose.
Les lymphocytes Th2 se différencient en présence d’IL-2 et IL-4 [26]. Ils sont caractérisés par l’expression de deux facteurs de transcription essentiels pour leur différenciation et le maintien du phénotype, GATA-3 et STAT6 [16]. L’activation de ces derniers permet aussi l’expression de CCR3, CCR4 et CCR8, qui sont des récepteurs aux chimiokines spécifiques au Th2 [27,28]. De façon semblable à t-bet, GATA-3 inhibe la polarisation en d’autres sous-populations de lymphocytes [29].

2.3 Les T régulateurs

Les lymphocytes T régulateurs (Tregs) aussi connu sous le nom de T suppresseurs, sont une sous-population de lymphocytes T qui joue un rôle essentiel dans le développement de la tolérance immunologique, l’homéostasie immunitaire, et aussi la prévention des maladies auto-immunes [30,31].

Les Tregs peuvent être divisés en deux types distincts : les Tregs naturels (nTregs) et Tregs induits (iTregs) [32]. Les nTregs sont produits dans le thymus et caractérisés par une forte expression du facteur FOXP3 [33], le facteur de transcription majeur qui régule ce phénotype. Quant aux iTregs, ils se différencient à partir de lymphocytes T auxiliaires naïfs suite à une présentation antigénique, en présence de TGF-β et d’acide rétinoïque (vitamine A) [34,35].

Ce phénotype produit diverses cytokines ; l’IL-10, TGF-β et l’IL-35 [22]. Ces cytokines régulent négativement la réponse immunitaire après la suppression des pathogènes, et ainsi ils limitent le dommage tissulaire qui est causé par le processus inflammatoire en inhibant la production des cytokines pro-inflammatoire par les lymphocytes T effecteurs, macrophages, cellules dendritiques [36].

Vu que cette sous-population joue un rôle crucial dans l’homéostasie immunitaire, un dysfonctionnement des Tregs peut mener au développement de plusieurs désordres auto-immuns tels que la sclérose en plaques, l’arthrite rhumatoïde ou le psoriasis [37].
2.4 Les Th9

Les lymphocytes Th9 sont une sous-population récemment décrite [38] qui joue un rôle essentiel dans la réponse immune contre les nématodes intestinaux tel que *Nippostrongylus brasiliensis* [39]. Les Th9 possèdent un rôle protecteur contre la croissance tumorale [40] et sont aussi impliqués dans l’initiation de plusieurs types d’asthme dans plusieurs modèles murins [41].

Cette sous population se caractérise par la production d’IL-9 en grande quantité [42] et l’expression de plusieurs facteurs de transcriptions PU.1, IRF4 et STAT-6 [43]. Leur différenciation requiert la présence de l’IL-4 et du TGF-β [38,44] qui induisent l’expression de l’IL-9 via la voie STAT6 et PU.1, respectivement [45]. À l’heure actuelle, aucun récepteur aux chimiotactines spécifique à cette sous-population n’a été identifié.

2.5 Les Th folliculaires

Les lymphocytes T folliculaires (Tfh) sont une sous population de T auxiliaires impliqués dans la réponse immune humorale [46] mais aussi dans le développement de certaines maladies auto-immunes tel que l’arthrite rhumatoïde [47].

Les Tfh se différencient en présence d’IL-6 et d’IL-21[48,49]. Ces cellules sont caractérisées par la production de l’IL-21 en grande quantité [50], l’expression du facteur de transcription spécifique : Bcl-6 [51], et l’expression du récepteur CXCR5 à leur surface [52]. Ce dernier joue un rôle essentiel dans leurs migration au niveau des zones folliculaires du centre germinatif des organes lymphoïdes secondaires [53]. À ce niveau, les Tfh interagissent avec les lymphocytes B, ce qui permet la différenciation de ces derniers en plasmacytoides et ainsi la production d’anticorps [54]. De la même façon que le t-bet, le facteur de transcription Bcl-6 réprime l’activation des facteurs de transcription spécifiques aux autres sous-populations de lymphocytes T [55].
2.6 Les lymphocytes Th17

Les lymphocytes Th17 sont une sous-population auxiliaire qui a été récemment décrite. Ils sont impliqués dans la réponse immune contre les bactéries extracellulaires et champignons telle que *Candida albicans* et *Staphylococcus aureus* [56], et dans l’immunité anti-tumorale [57]. Cependant, ce phénotype est aussi associé au développement de nombreuses maladies auto-immunes. Ce rôle sera décrit plus bas.

Les Th17 jouent un rôle crucial dans la défense contre de nombreux pathogènes en produisent l’IL-17, l’IL-21 et l’IL-22 [58]. L’IL-17 étant la cytokine signature, mène à la production de plusieurs médiateurs pro-inflammatoires par les cellules épithéliales et kératinocytes tels que les cytokines (IL-1, TNF, IL-6, G-CSF, G-CSF), les chimioxines (CXCL8, CXCL5, CCL2) et les peptides antimicrobiens (protéines S100 et défensines), induisant ainsi le recrutement et l’activation des neutrophiles et macrophages aux sites inflammatoires [2,59,60]. De son côté, l’IL-22 induit aussi la production de peptides antimicrobiens, ainsi que la prolifération et la réparation des dommages tissulaires causés par l’inflammation [61]. Quant à l’IL-21, cette cytokine possède une fonction pléiotropique et agit sur différentes cellules. Elle augmente la prolifération des lymphocytes T, la différenciation des lymphocytes B en plasmacystoïdes et en mémoire et active les cellules NK [62].

La différenciation des lymphocytes Th17 est dépendante de deux facteurs de transcription majeurs qui caractérisent cette sous-population : STAT3 et RORγτ [16]. Ces derniers, une fois activés, sont essentiels pour la différenciation, la production des cytokines et le maintien du phénotype.

Plusieurs études ont été réalisées chez la souris en premier, puis chez l’humain afin de mieux comprendre le processus de différenciation des Th17 [63,64]. Ces travaux montrent que la différenciation des lymphocytes Th17 humain se fait en présence d’IL-1β, TGF-β, IL-6 et d’IL-23, et est divisée en trois étapes [65].

La première étape est l’initiation de la différenciation. Elle est dépendante de l’IL-6, l’IL-1β et du TGF-β [66]. Ces cytokines vont promouvoir l’expression et l’activation de STAT3 et RORγτ. L’IL-6 et le TGF-β agissent en synergie afin d’activer STAT3, et ainsi augmenter
le niveau d’expression de RORγT [67,68]. Quant à l’IL-1β, elle induit l’expression de RORγT [66]. Le TGF-β induit via RORγT l’expression du CCR6, un récepteur essentiel pour la migration des Th17 vers les sites inflammatoires [69]. De plus, l’IL-6 induit l’expression de récepteur à l’IL-23 (IL-23R) et la production de l’IL-21 [60].

La deuxième phase d’amélioration est cruciale pour la différenciation. Elle est dépendante de l’IL-21 qui agit de façon autocrine en collaboration avec le TGF-β. Ces cytokines vont activer les facteurs STAT3 et RORγT, induire l’expression du récepteur de l’IL-23 et ainsi créer une boucle d’activation positive [70–72].

La troisième étape est la phase de stabilisation et est dépendante essentiellement de l’IL-23. Cette cytokine est sécrétée principalement par les CPA, la fixation de l’IL-23 à son récepteur active STAT3 menant à la production d’IL-17 et au maintien du phénotype [73,74].

En plus de leur cytokine signature, les Th17 sont caractérisés par une étonnante plasticité qui fait d’eux une sous-population instable. Ces changements phénotypiques sont influencés par les cytokines présentes dans le milieu. Ainsi en présence d’IL-12, les Th17 peuvent produire de l’IFN-γ. Ce phénotype Th17/Th1 est hautement inflammatoire, et de ce fait joue un rôle crucial dans le développement de plusieurs maladies auto-immunes [75]. Il existe aussi un autre phénotype rare, le Th17/Th2, capable de produire de l’IL-4 en plus de l’IL-17 [76].

2.6.1 Rôle de l’IL-17

L’IL-17 appartient à une famille de cytokines dimères, qui inclut six membres, de l’IL17A à F. Le plus souvent l’IL-17 est un homodimère d’IL-17A ou F. Cependant, il existe également un hétérodimère d’IL-17A/F. L’appellation IL-17 réfère le plus souvent à l’IL-17A [77].

L’IL-17 n’est pas produite uniquement par les lymphocytes Th17 mais aussi par d’autres cellules : les NK (Natural killer), lymphocytes T cytotoxiques, lymphocytes T γδ, et les neutrophiles [59]. Ces cellules produisent principalement l’IL-17A et F [78]. Néanmoins les Th17 restent les cellules productrices d’IL-17 les plus importantes.
L’IL-17A comme membre le plus important de la famille agit sur plusieurs cellules telle que les chondrocytes, fibroblastes, cellules endothéliales, monocytes et les kératinocytes et joue un rôle crucial dans le développement de plusieurs maladies auto-immunes [79].

3. Les lymphocytes Th17 dans les maladies auto-immunes

Les lymphocytes Th17 via l’expression de leurs cytokines pro-inflammatoires jouent un rôle essentiel dans la pathogénèse de plusieurs maladies auto-immunes. Dans ce manuscrit, je discuterai du rôle des Th17 dans l’arthrite rhumatoïde qui est le focus de recherche de notre laboratoire.

3.1 L’arthrite rhumatoïde

L’arthrite rhumatoïde est une maladie auto-immune systémique chronique, caractérisée par une destruction progressive du cartilage et des os [80]. Les lymphocytes Th17, via la sécrétion de cytokines pro-inflammatoire, principalement l’IL-17, jouent un rôle prépondérant dans la pathogénèse de cette maladie [81]. Plusieurs études ont montré que cette cytokine est retrouvée en grande quantité au niveau du liquide synovial des patients arthritiques [82]. De ce fait, elle contribue non seulement au déclenchement de la maladie mais aussi à sa progression.

L’IL-17 agit via son récepteur exprimé à la surface de plusieurs cellules présentes au niveau de l’articulation dont les monocytes, macrophages, fibroblastes, chondrocytes et ostéoblastes. La stimulation de ces cellules lors de l’interaction de l’IL-17 avec son récepteur induit la production de plusieurs cytokines pro-inflammatoires telle que : l’IL-1β, l’IL-6, l’IL-23 et le TNF-α. Ces dernières vont créer une boucle d’activation positive des Th17 et ainsi le déclenchement de l’auto-immunité [83]. Par ailleurs, l’IL-17 induit la production de chimioxines, ce qui va favoriser le recrutement des neutrophiles et des monocytes et contribue à l’inflammation. L’IL-17 induit la dégradation du cartilage au niveau des articulations via la production de métalloprotéïnases (MMP) et d’oxyde nitrique (NO) par les chondrocytes [84].
En plus de ces effets, l’IL-17 est incriminé dans l’érosion osseuse via la formation d’ostéoclastes qui sont les cellules responsables de la dégradation osseuse. L’IL-17 induit l’expression du ligand du récepteur activateur de NF-κβ (RANKL) par les ostéoblastes. RANKL est un membre la superfamille du TNF, qui lorsqu’il est lié à son récepteur RANK exprimé au niveau des précurseurs myéloïdes, induit leur différenciation en ostéoclastes. L’IL-17 peut aussi agir directement sur les précurseurs myéloïdes en augmentant l’expression de RANK [85–87].

4. Migration des lymphocytes Th17 aux sites inflammatoires

L’activation des lymphocytes T est un événement essentiel à la réponse immune spécifique. Cette activation a lieu dans les ganglions lymphatiques, et mène à leur différenciation et à l’acquisition de leurs fonctions effectrices. Les lymphocytes T effecteurs mémoires qui s’y développent, acquièrent aussi la fonction de migrer vers les sites inflammatoires et infectieux. Ceci est associé avec une augmentation d’expression des molécules d’adhésion dont les intégrines, et les récepteurs de chimioxines [88]. Dans le cas des lymphocytes Th17: leur activation mène à l’augmentation du récepteur CCR6 qui est le récepteur pour la chimioxine CCL20 [69,89].

La migration des lymphocytes Th17 aux sites inflammatoires, à l’instar des autres cellules immunitaires, est un processus clé pour l’efficacité de la réponse immune adaptative et de la réaction inflammatoire. Ce processus s’effectue en deux étapes majeures. Dans la première étape, les lymphocytes T doivent traverser la barrière endothéliale du vaisseau sanguin, un phénomène appelé transmigration endothéliale. La deuxième étape consiste à traverser la matrice extracellulaire (MEC) du tissu interstitiel qui est riche en collagène, afin de se localiser au niveau du site inflammatoire. Cette étape est dite migration interstitielle.
4.1 La migration trans-endothéliale

L’extravasation des leucocytes dont les lymphocytes T fait partie est un processus complexe qui implique une série d’événements séquentiels déterminés par les nombreuses interactions moléculaires entre les lymphocytes T et les cellules endothéliales. Ces molécules régulent les étapes de capture, de roulement, d’activation des intégrines, ainsi que l’adhésion ferme et la diapédèse (schéma 2) [90].

Le processus d’extravasation débute par la capture des lymphocytes Th17 présents dans la circulation sanguine par les cellules endothéliales du vaisseau sanguin. Cette capture est dépendante des sélectines [91]. Ces dernières jouent un rôle important dans l’initiation du contact entre les lymphocytes Th17 et l’endothélium. Les sélectines sont des glycoprotéines transmembranaires dont la partie extracellulaire possède trois domaines distincts [92]. Les lymphocytes Th17 expriment la L-sélectine, alors que les cellules endothéliales expriment la E et P-sélectine [93]. Cette expression est induite sous l’effet de plusieurs médiateurs inflammatoires, comme le TNF-α et l’IL-1β, sécrétés par les macrophages [94]. La L-sélectine interagit avec son ligand GlyCam-1 (glycosylation-dependant cell adhesion molecule 1) présent à la surface de l’endothélium [95]. La P et E-sélectines lient le PSGL-1 (P-selectine glycoprotein ligand 1) exprimé à la surface des Th17 [96]. La faible affinité des sélectines pour leurs ligands génère une série d’adhésion et de dé-adhésion résultant dans le roulement des lymphocytes à la surface de l’endothélium [97].

De plus, l’étape du roulement a pour but de favoriser l’interaction des chimioxines présentes à la surface apicale des cellules endothéliales, avec leurs récepteurs exprimés par les lymphocytes T [69,89,98]. Ceci va engendrer une signalisation intracellulaire chez les lymphocytes T connue sous le nom de signalisation “inside-out”, et mener à l’activation des intégrines [99]. Les intégrines sont une famille de récepteurs d’adhésion hétérodimétriques, exprimés à la surface cellulaire sous une forme inactive avec une conformation repliée. Lors de leur activation, elles adoptent une conformation de forte affinité pour leur ligands [100]. Les intégrines impliquées dans l’adhésion à l’endothélium sont LFA-1, α4β2 (VLA-4) et α4β7 exprimées par les lymphocytes Th17 dont les contre-récepteurs sont ICAM-1,VCAM-1 et MadCAM1 respectivement [98,101]. L’activation des intégrines mène à l’étalement, et
au déplacement des cellules T le long de la surface endothéliale afin de trouver un espace interstitiel permettant la transmigration [102].

Schéma 2 : étapes séquentielles de la transmigration.

Adapté de [103].

4.2 La migration interstitielle
Après avoir traversé la barrière endothéliale du vaisseau sanguin, les lymphocytes Th17 doivent aussi traverser le tissu interstitiel et pouvoir finalement se localiser au niveau du site inflammatoire et participer à la réponse inflammatoire. Ce phénomène est connu sous le nom de migration interstitielle durant lequel les Th17 traversent la MEC du tissu interstitiel.

4.3 La matrice extracellulaire
La MEC est une composante non-cellulaire présente dans tous les tissus et organes. Elle est constituée par un ensemble de molécules extracellulaires qui forme un complexe tridimensionnel (3D). Elle procure aux tissus non seulement un soutien physique mais régule
aussi la morphogénèse et l’homéostasie de ces tissus. Elle est synthétisée par plusieurs cellules telles que les fibroblastes, cellules épithéliales et les cellules endothéliales [104].

La MEC est constituée principalement de deux composantes; les protéoglycannes (PG) et les protéines fibrillaires. Le PG est composé de glycoaminoglycans (GAG) qui sont de longues chaînes de polysaccharides non ramifiées liées de façon non-covalente à un corps protéique. Le PG remplit la majorité de l’espace interstitiel au niveau du tissu sous la forme d’un gel hydraté [105]. Il est important dans l’hydratation, le maintien de la turgescence cellulaire, et la filtration des substances à travers la matrice extracellulaire [106].

Concernant les protéines fibrillaires, elles sont principalement composées par le collagène, l’élastine, la fibronectine et la laminine [107]. Le collagène est la protéine fibrillaire la plus abondante de la matrice extracellulaire. Cette matrice constitue à elle seule plus de 30% de l’ensemble des protéines chez l’humain, et est secrété principalement par les fibroblastes, cellules épithéliales et cellules endothéliales [108]. Le collagène forme une superfamille constituée de vingt-huit membres, qui s’organisent sous forme de triple hélice [104]. Le collagène de type I représente le type le plus important de plusieurs tissus. Il est l’élément structural majeur des tissus tel que le derme, l’os et les tendons [109]. Il assure les propriétés élastiques des tissus, régule l’adhésion, supporte la chimiotaxie et la migration cellulaire [108]. De ce fait, il joue un rôle crucial dans la migration et la localisation des lymphocytes T aux sites inflammatoires.

4.4 Mécanismes de migration interstitielle

À l’issue de la diapédèse les cellules se retrouvent dans l’environnement interstitiel, qui est constitué par un réseau 3D essentiellement composé des fibres de collagène de type I. Pour traverser ce réseau, les cellules peuvent utiliser deux modes de migration distincts : le mode mésenchymale et le mode amiboïde. Les deux modes différents essentiellement par la stratégie migratoire. Nous discuterons dans ce qui suit des deux types de migration et des mécanismes qui sont impliqués dans la migration à travers le collagène 3D. Ce modèle de migration est plus physiologique que les modèles de migration en surface planaire (2D) et est mimé in vitro par les gels de collagène.
4.4.1 Le mode mésenchymale

C’est le mode de migration le plus connu, puisque il est inspiré des études de migration dans des modèles en deux dimensions (2D). Il est utilisé entre autres par les fibroblastes, cellules épithéliales et les cellules cancéreuses. Dans ce mode, la cellule adopte une forme allongée et la migration dépend des intégrines. Ce type de migration est aussi rencontré dans la migration à travers des matrices de collagène en 3D comme les gels de collagènes.

Le mouvement des cellules dans un environnement 3D comprend cinq étapes cycliques : l’extension membranaire, l’adhésion, la sécrétion de protéases, la traction du corps cellulaire et la rétraction de l’arrière de la cellule (schéma 3).

La première étape est la polarisation de la cellule et la formation d’un front de migration à l’avant. Quant au noyau et le reste du cytoplasme, ils se retrouvent à l’arrière de la cellule [110]. Le front de migration se traduit par la formation de longues extensions ; les lamellipodes [111]. Cette polarisation dépendante des lamellipodes survient suite à la reconnaissance de signaux externes essentiellement les chimiokines et les facteurs de croissances, qui suite à leurs liaisons à leurs récepteurs activent un bon nombre de molécules effectrices intracellulaires. Parmi ces molécules, la voie PI3K (phosphoinositide 3-kinase) qui une fois activée génère une accumulation du PIP3 (Phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3)) à l’avant de la cellule permettant ainsi le recrutement de deux membres de la famille Rho-GTPases : Rac et Cdc42 [112]. Ce qui va induire la polymérisation des filaments d’actine via l’activation de Arp2/3 (Actin Related Protein 2/3) par les protéines de la famille WASP (Wiskott-Aldrich Syndrom Protein) [113–115].

La polarisation cellulaire est suivie par l’attachement de la protrusion à la MEC. Ceci est réalisé grâce aux récepteurs de la famille des intégrines, et se traduit par l’adhésion à la MEC sous forme de plaques d’adhésion faisant intervenir la Rho-GTPase Rac1 [116–118].

L’engagement des intégrines avec leurs ligands de la MEC permet également le recrutement des protéases cellulaires, ces dernières entrainent une rupture des adhérences mais aussi un remodelage de la MEC environnante afin de créer un chemin pour la cellule [119]. La dégradation de la matrice extracellulaire constitue une caractéristique clé du mode
mésenchymale [120]. Cette étape fait aussi intervenir Rac1, qui induit l’expression de plusieurs MMPs responsables de la dégradation de la MEC [121].

L’adhésion et la dégradation de la MEC sont suivies par la translocation du corps cellulaire vers l’avant sous l’action du réseau d’acto-myosine. La contraction de ce réseau est dépendante de RhoA et de son effecteur la kinase ROCK1, qui via la myosine II accentue la contractilité des filaments d’acto-myosines menant ainsi à la formation de fibres de stress [122]. La tension cellulaire crée aboutit au regroupement des intégrines pour former des points d’adhérences focales aux extrémités des fibres de stress, stabilise la cellule et fournit une base pour générer la force nécessaire pour tirer la cellule vers l’avant [123].

Finalement, il y a relâchement de l’arrière de la cellule. Cela est dû au désassemblage des points d’adhérences focales, qui est dépendant de plusieurs mécanismes [124]. Ces mécanismes reposent d’une part sur l’action de la calpain qui va cliver le complexe d’adhésion [125], et d’autre part sur le transport des intégrines depuis l’arrière jusqu’à l’avant de la cellule dans des vésicules d’endocytose, pour établir de nouveau points d’encrages [110,123].

En résumé, la migration mésenchymale est caractérisée par une forte adhésion de la cellule à la MEC, et à la dégradation de cette dernière par la sécrétion de MMPs. Dans ce mode les protéines de la famille Rho et notamment Rac1 et Cdc42 jouent un rôle crucial.
Schéma 3 : la migration mésenchymale des cellules dans un environnement 3D.

Tiré de [111].
4.4.2 Le mode amiboïde

La description de ce mode de migration est assez récente. Son étude s’est développée avec l’arrivée des modèles expérimentaux en 3D, car ces modèles permettent de mieux mimer la physiologie de la migration qui a lieu à travers la MEC. Ce mode a été initialement décrit chez l’amibe *Dictyostelium discoideum* ; un organisme unicellulaire qui adopte un mode de migration rapide associé à une grande déformation cellulaire [126]. Ce même mode de migration a été par la suite observé chez les cellules immunitaires, notamment les lymphocytes T, et plus récemment chez certaines cellules cancéreuses où il est largement associé à un comportement migratoire associé à la dispersion métastatique [127].

Le mode amiboïde repose sur la notion que le déplacement des cellules dans un environnement 3D ne requiert pas nécessairement un attachement fort à la MEC, et ne nécessite pas la dégradation de cette dernière. Contrairement au mode mésenchymal, les cellules adoptent une forme arrondie, une grande contractilité avec l’absence de forte adhésion (indépendante des intégrines) et de protéolyse de la MEC. De ce fait, lors de la migration, les cellules semblent être contraintes par leur environnement (la MEC), et s’adaptent à son architecture en se frayant un chemin à travers les fibres ou en déformant légèrement les fibres de la matrice (schéma 4)[128,129].

Dans ce mode, le mouvement des cellules est largement dépendant de la contractilité de la cellule qui se fait par une succession d’extensions suivie de contraction, et qui se manifeste par la production d’extensions membranaires appelées “blebs”. Quatre phases caractérisent ce mouvement. L’ensemble de ces phases sont sous le contrôle de la voie Rho/ROCK et du cytosquelette d’acto-myosine [130].

Les blebs sont de courtes extensions membranaires sphériques dépourvues d’actine qui ont une durée de vie courte d’environ deux minutes [131]. La phase initiale débute par le détachement ou la rupture locale de l’actine corticale. La phase d’expansion est générée par la forte pression cytosolique s’exerçant sur la membrane plasmique, ce qui provoque l’étirement du bleb dans les trous naturels de la MEC permettant ainsi la génération de la traction d’une force motrice nécessaire pour le déplacement de la cellule [132]. La phase d’assemblage du cortex est formée lorsque l’acto-myosine et le complexe ERK (ezrin, radixin, moesin) se rassemblent sous la membrane du bleb. Finalement, la phase de rétraction,
est due à l’activité de Rho/ROCK qui induit la contraction de la myosine recrutée à l’intérieur du bleb [127,133,134]. Ce mode de migration est adopté par plusieurs types de cellules, comme les cellules dendritiques, les neutrophiles, les lymphocytes T[120]. Une autre caractéristique de ce mode est la vitesse de migration qui peut atteindre jusqu’à 25µm/min, et donc qui est plus rapide que celle du mode mésenchymale [135].

Schéma 4 : La migration amiboïde des leucocytes dans un environnement 3D.

Adapté de [136]
5. Les récepteurs aux collagènes chez les lymphocytes T

L’interaction des lymphocytes T avec la MEC et en particulier avec le collagène est régulée par le biais de plusieurs récepteurs. Parmi eux, on distingue les intégrines et les récepteurs à domaine discoïdine. Ces deux familles de récepteurs sont largement exprimées chez les vertébrés [137]. Malgré que l’adhésion ferme ne soit pas requise pour le mouvement amiboïde, il n’en demeure pas moins que les contacts entre la cellule et la MEC sont essentiels pour déclencher ce mouvement.

5.1 Les intégrines

Les intégrines sont une famille de molécules d’adhésion, dont la plupart des membres sont impliqués dans les interactions avec la matrice extracellulaire mais aussi dans les interactions cellules-cellules [107]. Elles sont constituées de 24 hétérodimères α/β liées par une liaison non-covalente [138].

Les intégrines sont classées selon la sous-unité β, et ce sont les différentes combinaisons entre les deux sous-unités qui déterminent la spécificité des intégrines à leurs ligands [139]. Une intégrine peut avoir plusieurs ligands, et un ligand peut être reconnu par plus qu’une seule intégrine. À titre d’exemple, l’intégrine α1β1 lie le collagène et la laminine. De son côté la laminine reconnaît les intégrines α1β1, α2β1, α6β1, et α3β1 [140].

Les intégrines sont exprimées de façon ubiquitaire à la surface cellulaire. Les intégrines de la famille β2 sont exprimées uniquement chez les leucocytes et participent aux interactions cellule-cellule. La famille β1 et β3 sont plus largement exprimées et participent aux interactions avec la MEC [138,141,142]. L’interaction entre l’intégrine et son ligand est contrôlée par deux facteurs soit l’affinité et l’avidité de l’intégrine.

Les intégrines régulent plusieurs fonctions cellulaires, principalement l’adhésion et la migration, mais aussi la prolifération, la survie cellulaire et agissent comme molécules de costimulation [143].

Les lymphocytes T expriment de nombreuses intégrines de la famille β1 qui lient le collagène. Cette expression est variable selon l’état d’activation de la cellule. Ainsi, les
lymphocytes T naïfs retrouvés en circulation ou au sein des ganglions lymphatiques n’expriment pas d’intégrines liant le collagène. Cette expression est acquise au cours de leur activation et intervient seulement quelques jours après [139]. Ce qui coïncide avec le positionnement des lymphocytes T dans les sites inflammatoires [144]. Les intégrines exprimées sont α1β1 et α2β1 [145]. L’intégrine α1β1 lie préférentiellement le collagène IV alors que α2β1 peut lier le collagène de type II et IV mais a une plus grande affinité pour le collagène de type I [145]. Les lymphocytes Th17 expriment α2β1 et pas α1β1. Par contre les Th1 expriment les deux [143,146,147].

Suite à la liaison au collagène, les intégrines régulent plusieurs fonctions chez les lymphocytes T effecteurs. Il a été rapporté que la liaison de α2β1 au collagène de type I protègerait les lymphocytes T de l’apoptose induite par l’activation. Cela en réduisant l’expression de Fas-L par les lymphocytes T, et en inhibant l’activation de la caspase-8 [148,149]. De plus l’intégrine α2β1 augmente l’expression de l’IFNγ chez les lymphocytes T CD4+ effecteurs en activant les voies MAPK-ERK, JNK et PI3kinase/AKT [150].

Récemment, il a été démontré que l’intégrine α2β1 pouvait agir en coopération avec le TCR et le récepteur de l’IL-7 (IL-7R) afin d’augmenter l’expression de l’IFN-γ et l’IL-17 par les lymphocytes Th17 [143,151]. Par ailleurs le blocage de l’intégrine α2β1 réduit le développement de l’arthrite en diminuant l’activation et la survie des Th17 recrutés au niveau des articulations [151,152].

En ce qui concerne la migration interstitielle, le rôle des intégrines reste encore ambigu. Cependant, on sait que les lymphocytes T effecteurs migrent dans un environnement 3D selon un mode amiboïde. Un mode qui ne requiert pas de forte adhésion et de façon indépendante des intégrines [153]. Ce qui suggère l’implication d’autres récepteurs dans la migration des lymphocytes T effecteurs.
5.2 Les récepteurs à domaine discoïdine

Les récepteurs à domaine discoïdine DDR1 et DDR2 sont eux aussi une famille de récepteurs au collagène [154]. Ils appartiennent à la famille des récepteurs à activité tyrosine kinase (RTK) [155]. Ils ont été découverts par Johnson et al en 1993 lorsque ce groupe cherchait à déterminer les RTK surexprimés dans les cancers du sein [156]. Ces récepteurs sont restés longtemps orphelins jusqu’en 1997 quand deux groupes indépendants découvrirent que ces récepteurs ont pour ligand le collagène [157,158].

Les DDRs sont composés de quatre domaines : un domaine discoïdine extracellulaire qui lie le collagène. Ce domaine est homologue au domaine discoïdine I, qui lie une lectine que l’on retrouve chez l’amibe Dictyostelium discoideum. Un domaine juxta-membranaire extracellulaire qui porte les sites de N et O-glycosylation, et un site de clivage des MMP, un domaine transmembranaire qui médie la dimérisation du récepteur et un domaine intracellulaire qui contient la tyrosine kinase [137,159].

Les récepteurs DDR sont considérés comme des RTK atypiques [160]. Contrairement à la plupart des RTK qui se dimèrent en présence du ligand, les DDRs forment constitutivement un dimère [161]. De plus, ces récepteurs possèdent une activité tyrosine kinase lente et soutenue. L’autophosphorylation des résidus tyrosine peut prendre des heures, alors qu’elle prend quelques minutes chez les RTK classiques [157,162]. Tandis que les RTK classique sont activés par des facteurs de croissance soluble tel que le EGF (epidermal growth factor), les DDR sont activés par le collagène, le constituant majeur de la matrice extracellulaire [163].

Les DDRs se lient uniquement au collagène natif sous sa configuration en triple hélice. Ils ne reconnaissent pas le collagène dénaturé par la chaleur [164]. Les deux récepteurs sont communément activés par le collagène. Cependant, ils possèdent des préférences pour certains types de collagène. Le DDR1 se lie au collagène de type I à VI et VIII [157,158], alors que DDR2 lie le collagène de type I à III et le X [165,166].

À l'inverse de DDR2, DDR1 est exprimé sous cinq isoformes de a à e, qui sont le résultat d’un épissage alternatif de la région intracellulaire [162,167]. DDR1a, b et c sont les trois isoformes qui possèdent un domaine kinase actif, alors que DDR1d et e, en sont tronqués [168]. DDR1c est l’isoforme le plus long et il est composé de 919 acides aminés, alors que
DDR1a et b qui sont les plus abondants, ont 37 et 6 acides aminés de moins dans le domaine juxta membranaire et le domaine kinase respectivement [169]. DDR1d est dépourvu d’activité kinase dû à l’absence du domaine kinase, alors que pour DDR1e, son domaine kinase est inactif (voir schéma 4) [167].

5.2.1 Expression et fonctions des DDRs

Ces récepteurs contrôlent plusieurs processus dont : la prolifération, l’adhésion, la migration et le remodelage de la MEC [155]. Ils sont largement exprimés dans plusieurs types cellulaires ainsi que dans de nombreux cancers. Cependant leur distribution tissulaire diffère. L’expression de DDR1 est prédominante dans les cellules épithéliales, alors que DDR2 est retrouvé chez les cellules mésenchymale [170]. Ils sont aussi retrouvés à la surface des cellules immunes. DDR1 est exprimé à la surface des monocytes, neutrophiles, lymphocytes T activés et Th17 [171–173], alors que DDR2 est exprimé chez les neutrophiles et les cellules dendritiques immatures [171,174].

Plusieurs pathologies sont associées aux DDRs, telle que l’athérosclérose, la fibrose du foie, ou encore le cancer. Dans cette dernière, ces récepteurs permettent la croissance de la tumeur et la formation de métastases en favorisant la migration des cellules et l’invasion à travers l’expression et la sécrétion des MMPs [137].

Dans cette section qui suit, nous allons nous intéresser au DDR1 étant donné que ce récepteur est exprimé à la surface des lymphocytes Th17 [173].

Plusieurs études ont impliqué DDR1 dans le développement tumoral. Sa surexpression est associée avec les cancers à caractère très invasif comme le cancer du poumon, du sein, du cerveau et des leucémies [137]. Il semble que son rôle dans la dissémination métastatique est relié à l’expression et à la sécrétion des MMP responsables de la dégradation de la MEC [170]. Il a été rapporté que DDR1 induit l’expression de MMP-2 et MMP-9 dans de nombreuses cellules cancéreuses [168,175,176]. Il a aussi été rapporté que la surexpression de DDR1 chez la lignée THP-1, une lignée cellulaire de monocytes, augmente la migration de cette lignée dans le collagène 3D [171].

23
Pour ce qui est des voies de signalisation activées par DDR1 pour promouvoir la migration cellulaire, plusieurs études ont rapporté que l’activation de ce récepteur par le collagène, induit l’activation de nombreuses voies signalétiques. DDR1 active la voie MAPK-ERK chez les cellules du muscle lisse, les mégacaryocytes, et les cellules souches mésenchymales [155]. Il peut activer aussi la voie MAPK-JNK chez les cellules du cancer du pancréas et les cellules stromales du tissu adipeux [155].

Concernant les lymphocytes T, les travaux dans notre laboratoire ont montré que l’activation des lymphocytes par le TCR induit l’expression de DDR1 via la voie Ras/Raf/ERK et la PKC (protein kinase C). Nous avons aussi démontré que ce récepteur est responsable de la migration de ces cellules dans un gel de collagène [177]. De plus, nous avons également montré que DDR1 n’est pas requis pour l’adhésion ferme des lymphocytes T activées au collagène, ce qui suggère que ce récepteur module la migration de type amiboïde, une migration indépendante de forte adhésion et de sécrétion de MMP [173,177]. Récemment, nous avons montré que les lymphocytes Th17 expriment DDR1, et que ce dernier régule leur migration dans le collagène 3D en activant la voie signalétique Rho/ROCK/MAPK/ERK. Par ailleurs, DDR1 est aussi important dans la migration in vivo des Th17 dans un modèle inflammatoire de la poche d’air chez la souris [172].
6. Migration cellulaire et signalisation intracellulaire

La migration cellulaire est gouvernée par un réseau complexe qui fait intervenir plusieurs voies de signalisation intracellulaires telle que la voie PI3K, les GTPases de la famille Rho, et les MAPK. Ces voies de signalisation sont impliquées dans la réorganisation du cytosquelette cellulaire et ainsi de procurer à la cellule la force nécessaire pour migrer. Dans ce manuscrit, nous allons développer la famille Rho GTPases et les MAPK, en vue de leur rôle important dans la migration des leucocytes.
6.1 La famille Rho

Les Rho GTPases constituent une large sous-famille de à la superfamille des petites protéines G monomériques Ras. Chez l’humain, on dénombre 20 gènes qui codent pour les Rho-GTPases [178,179]. Les différents membres de cette famille sont classés en six sous-familles qui possèdent des propriétés similaires mais ne sont pas identiques [180]. RhoA, Rac1 et Cdc42 sont les membres les plus étudiés et les mieux caractérisés. Ces derniers ont été largement étudiés pour leur rôle dans la migration cellulaire[181].

Les Rho-GTPases agissent comme des interrupteurs moléculaires, qui cyclent entre deux états conformationnels interconvertis, un état inactif lié au GDP (Guanosine di-phosphate) et un état actif lié au GTP (Guanosine triphosphate) [178]. Leur activation est déclenchée en réponse à divers signaux extracellulaires comme l’activation du TCR, l’activation des récepteurs membranaires à activité tyrosine kinase ou couplés aux protéines hétérodimérique G, ou encore à l’engagement des intégrines [116,182–184].

Le cycle d’activation des Rho-GTPases est finement régulé par des régulateurs positifs, les GEF (guanosine exchange factor) qui catalysent l’échange GDP/GTP, et par des régulateurs négatifs les GAP (GTPase activating protein) qui favorisent le retour à l’état inactif en hydrolysant le GTP en GDP, en stimulant l’activité intrinsèque de la GTPase [185]. La nécessité des GAP vient du fait que les Rho-GTPases possèdent une faible activité GTPase. D’autres régulateurs sont aussi impliqués dans la régulation négative. Les RhoGDI (guanine nucleotide dissociation inhibitor) préviennent l’activation spontanée des Rho GTPases en empêchant leur interaction avec leurs régulateurs et leurs effecteurs[186].

Les Rho-GTPases ont été d’abord dérites comme régulant la réorganisation du cytosquelette d’actine ainsi que la motilité cellulaire. Cependant, elles se sont aussi révélées être importantes dans de nombreux processus comme l’expression génique, la prolifération, la survie et le trafic vésiculaire [187,188]. Dans ce manuscrit, nous allons traiter leur rôle dans la migration cellulaire.

Les Rho-GTPases (Rho, Rac et Cdc42) exercent des fonctions cruciales mais différentes, lors de la migration cellulaire afin de coordonner la contraction cellulaire et la polymérisation d’actine pour produire un mouvement efficace.
Rac1 induit la formation de protrusions membranaires au niveau du front de migration de la cellule, Cdc42 régule la direction de la migration et RhoA permet la contraction des filaments d’acto-myosine à l’arrière de la cellule [189].

Rac1 et Cdc42 favorisent la polymérisation des filaments d’actine et la formation de lamellipodes. La polymérisation de l’actine est réalisée par Rac1 et Cdc42 qui activent respectivement WASP et WAVE (WASP-family verprolin-homologous protein). Ces facteurs vont alors stimuler le complexe Arp2/3 [114,115,190]. Ce complexe de nucléation des monomères d’actine est alors activé et initie la polymérisation des filaments d’actine [191]. Ces deux protéines sont donc très importantes pour promouvoir l’adhésion cellulaire.

Les Rho sont impliqués dans la migration de plusieurs types cellulaires. RhoA est connue pour réguler la migration de type amiboïde [192]. Plusieurs études ont montré que l’inhibition de la voie Rho/ROCK inhibe la migration des cellules endothéliales, des macrophages, et des cellules du muscle [196], alors que Rac1 et Cdc42 régulent la migration de type mésenchymale dans le collagène [197–199]. Nous avons montré que la migration des lymphocytes Th17 dans le collagène 3D nécessite la voie RhoA/ROCK et est associée avec une diminution de l’activation de Rac1 [172].

6.2 Les MAPK

Les Mitogen Activated Protein kinases (MAPK) sont des sérines/thréonine kinases activées en réponse à divers stimuli extracellulaires [200]. Ils peuvent activer plusieurs facteurs de transcription, régulant ainsi l’expression de nombreux gènes impliqués dans la survie, la différenciation, la migration et l’invasion cellulaire [201]. De plus, les MAPKs sont connues
pour leur implication dans le développement de nombreuses maladies auto-immunes et cancers [202–204].

Chez les cellules de mammifères, les MAPK se divisent en trois groupes : les kinases régulées par des signaux extracellulaires ERK, les protéines kinases de 38 kDa (p38) et les kinases de c-Jun NH2 terminal (JNK) [205]. Les trois groupes s’activent de façon similaire. Leur cascade d’activation correspond à trois kinases activées séquentiellement. Ainsi, l’activation des MAP kinases kinases kinases (MAPKKK) mène à celle des MAP kinases kinases (MAPKK) qui à leur tour elles activent les MAPK comme ERK ou p38. Cette cascade d’activation se fait par phosphorylation [206].

Les ERKs sont composées de plusieurs membres dont ERK1 et 2 sont les plus étudiés. Ces derniers partagent 83% de leur séquence d’acide aminés, et sont exprimés chez les lymphocytes T [200,207]. Les p38 existent sous quatre isoformes α,β, γ et δ, cependant l’isoforme γ n’est pas exprimé chez les lymphocytes T [208,209]. Quant aux JNK, ils sont composés en trois membres de JNK1 à 3. De leur côté, les lymphocytes T expriment seulement JNK1 et 2 [210,211].

Chez les lymphocytes T, les voies MAPKs jouent un rôle important et sont impliquées dans la maturation, l’activation, la différenciation et la production cytokinique. Plusieurs études ont montré que la voie ERK est impliquée dans la différenciation des lymphocytes Th2 [212]. Quant à la voie p38, elle régule l’activation et la différenciation des lymphocytes Th1 et Th17, ainsi que la production d’IFN-γ et d’IL-17 [213,214]. De son côté, la voie JNK est aussi impliquée dans la production de l’IL-17 [152].

L’implication des MAPK dans la migration des lymphocytes T effecteurs à travers le collagène 3D reste encore peu étudiée. On sait que ces voies jouent un rôle crucial dans la migration de plusieurs types cellulaires en réponse à divers facteurs (facteurs de croissances, cytokines). Plusieurs études ont montré que l’inhibition de la voie ERK réduit la migration des fibroblastes, des cellules du carcinome et des cellules du fibrosarcome en réponse aux protéines de la MEC telle que la fibronectine, vitronectine, et le collagène [215–217]. De ce qui est du mécanisme d’action, il semblerait que la voie ERK module le cytosquelette d’actomyosine en phosphorylant la MLCK (myosin light chain kinase) qui va activer la myosine [216]. Le désassemblage des points d’adhérences fait intervenir la calpaïne [218].
Quant à la voie p38, elle régule la migration induite par des facteurs de croissances et cytokines des cellules du muscle lisse, des neutrophiles, des cellules endothéliales dans le collagène 3D, et l’invasion des cellules du carcinome [219–222], ainsi que la migration induite par le SDF-1α de la lignée lymphoblastique T [223]. Concernant le mécanisme, il semble que cette voie soit impliquée dans la migration directionnelle des cellules en régulant les points d’adhérence focale [222].

Pour ce qui est de la voie JNK, des études ont montré qu’elle est impliquée dans la migration des fibroblastes, des cellules du muscle lisse et des cellules souches embryonnaires induite par les facteurs de croissance [222–224]. Cette voie semble être importante dans la réorganisation du cytosquelette cellulaire en activant la Rho GTPase Rac1 [227]. Ainsi que la phosphorylation des protéines associées aux microtubules [222]. Ainsi, il semblerait que les voies MAPK soient capables de réguler la migration cellulaire à différents niveaux et par différents mécanismes.
La migration des lymphocytes Th17 à travers la matrice extracellulaire (MEC) est une étape importante pour l’efficacité de la réponse immune adaptative, mais aussi dans le développement des maladies auto-immunes. Cette migration a lieu dans un environnement tridimensionnel (3D) composé essentiellement par les fibres le collagène de type 1.

Dans cette migration, les récepteurs au collagène et plus particulièrement le récepteur à domaine discoïdine de type 1 (DDR1) joue un rôle important.

Il a déjà été démontré que le récepteur DDR1 est exprimé chez les lymphocytes T suite à leur activation via le TCR, et que DDR1 favorise leur migration à travers le collagène 3D. De plus, notre laboratoire a récemment démontré que les lymphocytes Th17 expriment ce récepteur et migrent à travers le collagène 3D via ce dernier en activant la voie MAPK/ERK.

La migration cellulaire implique plusieurs voies de signalisation. Dans ce contexte et afin de mieux comprendre comment DDR1 régule cette migration, nous avons donc émis l’hypothèse que la migration des lymphocytes Th17 à travers le collagène 3D nécessite l’activation d’autres voies MAPK. Pour y répondre, nous nous sommes fixés les objectifs suivants :

Premièrement, déterminer le rôle du collagène 3D dans l’activation des voies MAPK p38 et JNK. Deuxièmement, évaluer le rôle de ces voies dans la migration des lymphocytes Th17 à travers le collagène 3D. Et finalement, déterminer le rôle de DDR1 dans l’activation des MAPK p38 et JNK.
Chapitre II : La migration des lymphocytes Th17 humain dans le collagène tridimensionnel implique la voie MAPK/p38.

1. Résumé

La migration des lymphocytes T à travers la matrice extracellulaire (MEC) est une étape cruciale au cours de la réponse immune adaptative. Elle est aussi impliquée dans le développement de maladies auto-immunes. Actuellement, les mécanismes qui régulent la motilité des lymphocytes T effecteurs dans la MEC ne sont pas encore entièrement élucidés. L'activation de la voie MAPK/p38 est impliquée dans l'activation des lymphocytes T, ainsi que dans le développement de la réponse immunitaire et inflammatoire. Dans cette étude, nous avons examiné l'implication de la voie p38 dans la migration des lymphocytes Th17 à travers le collagène. En utilisant des inhibiteurs spécifiques et des siRNA, nous avons trouvé que la voie p38 est nécessaire pour la migration des Th17 à travers le collagène tridimensionnel (3D) et que cette matrice 3D augmente la phosphorylation de p38. Nous montrons également que le récepteur à domaine discoïdine de type 1 (DDR1) : un récepteur au collagène, favorise la migration des Th17 dans le collagène 3D, et est impliqué dans l'activation de p38. L’ensemble de ces résultats suggèrent que le ciblage de la voie DDR1/p38 MAPK pourrait être bénéfique pour le traitement des maladies inflammatoires dépendantes des Th17.
Human Th17 migration in three-dimensional collagen involves p38 MAPK

Maleck Kadiri¹, Sofiane Berrazouane¹, Mohamed-Amine El Azreq¹ and Fawzi Aoudjit¹,²*

¹Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC.
²Département de Microbiologie-Immunologie, Faculté de Médecine, Université Laval, Québec, QC.

RUNNING HEAD: Th17 migration requires p38

KEY WORDS:
- p38 MAPK
- Migration
- 3D collagen
- T cells
- DDR1

Number of Figures: 6
Tables: 0

Contract grant sponsor: Natural Sciences and Engineering Research Council of Canada
Contract grant number: #290517

*Corresponding author: Centre de Recherche du Centre Hospitalier Universitaire de Québec, 2705 Boulevard Laurier, local T1-49, Québec, QC, G1V 4G2, Canada, Tel: 418-525-4444 #46071, Fax: 418-654-2765; Email: fawzi.aoudjit@crchudequebec.ulaval.ca
2. Abstract

T cell migration across extracellular matrix (ECM) is an important step of the adaptive immune response but is also involved in the development of inflammatory autoimmune diseases. Currently, the molecular mechanisms regulating the motility of effector T cells in ECM are not fully understood. Activation of p38 MAPK has been implicated in T cell activation and is critical to the development of immune and inflammatory responses. In this study, we examined the implication of p38 MAPK in regulating the migration of human Th17 cells through collagen. Using specific inhibitor and siRNA, we found that p38 is necessary for human Th17 migration in three-dimensional (3D) collagen and that 3D collagen increases p38 phosphorylation. We also provide evidence that the collagen receptor, discoidin domain receptor 1 (DDR1), which promotes Th17 migration in 3D collagen, is involved in p38 activation. Together, our findings suggest that targeting DDR1/p38 MAPK pathway could be beneficial for the treatment of Th17-mediated inflammatory diseases.
3. Introduction

Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved family of protein kinases that phosphorylate their substrates on serine and/or threonine residues [Gaestel, 2015; Peti and Page, 2013; Sun et al., 2015; Thalhamer et al., 2008]. They play important regulatory roles in a wide range of cellular processes including gene expression, differentiation, survival, migration and invasion. There are three major MAPK pathways in mammalian cells; the extracellular signal-regulated protein kinases (ERK), the c-Jun NH₂ terminal kinases (JNK) and the p38 MAP kinases (p38). The MAPK signaling cascade is activated in response to diverse environmental cues such as cytokines and integrin ligands including matrix proteins [Sun et al., 2015; Thalhamer et al., 2008] as well as in response to antigen receptors in lymphocytes [Yasuda, 2016].

Several studies have shown that p38 plays an important role in immune cell activation and in the development of inflammatory diseases [Ashwell, 2006; Clark and Dean, 2012; Krementsov et al., 2013]. Besides macrophages, p38 is critical for Th1 differentiation and production of IFNγ [Yang et al., 2010]. More recently, p38 has been implicated in Th17 differentiation and activation and in the development of experimental autoimmune encephalomyelitis [Di Mitri et al., 2015; Noubade et al., 2011].

Effector T cell migration within the tissues across ECM and especially collagen is an important step of the immune response and in the development of inflammatory diseases. The use of three-dimensional (3D) matrices such as collagen type I gels, which are more relevant physiologically than the 2D models, revealed that effector T cells migrate in 3D collagen using the amoeboid movement [Friedl et al., 1998; Friedl and Weigelin, 2008; Schmidt and Friedl, 2010]. This movement occurs independently from strong adhesive forces mediated by integrins and from ECM remodelling by metalloproteinases (MMPs). In addition, integrins are also dispensable for the migration of dendritic cells and monocytes in 3D collagen and in interstitial tissues [Lämmermann et al., 2008]. Along these lines, we and others have reported that the non-integrin collagen receptor, the discoidin domain receptor 1 (DDR1), is expressed upon T cell activation and promoted T cell migration in 3D collagen [Hachehouche et al., 2010; Kamohara et al., 2001]. Moreover, we recently found that DDR1 enhanced Th17 migration by activating the MAPK/ERK pathway [El Azreq et al., 2016].
Despite these findings, the signaling pathways regulating T cell movement in collagen are not fully understood.

The p38 MAPK has been implicated in growth factor- and cytokine-induced migration of various cell types including smooth muscle and endothelial cells and neutrophils [Huang et al., 2004]. It has been suggested that p38 phosphorylates the MAPK-activated protein kinases 2/3, which then facilitates directional migration [Huang et al., 2004]. In T cells, p38 has been involved in SDF1α-induced migration of lymphoblastic T cell lines [Naci and Aoudjit, 2014]. However, the role of p38 in effector T cell migration in 3D collagen still remains unknown.

In this study, we used human polarized Th17 cells as a model of effector T cells and showed that contact of Th17 cells with 3D collagen increases p38 activation. Inhibition studies indicated that p38 is necessary for Th17 movement in 3D collagen. In addition, we provided evidence that DDR1 is involved in p38 activation by collagen. Thus, our findings further support the role of p38 in T cell physiology and suggest that the blockade of DDR1/p38 MAPK pathway could interfere with the migration of effector T cells into inflammatory tissues that are rich in collagen.

4. Materials and methods

4.1 Reagents and antibodies

HBSS, ficoll and FBS were from Wisent (St.Bruno, QC, Canada). X-vivo 15 medium was from Lonza Technologies (Basel, Switzerland). Rat-tail collagen I (collagen) was from Corning (Bedford, MA). The p38 and JNK inhibitors SB203580 and SP600125 respectively and calcein-AM were from Calbiochem (San Diego, CA). Human cytokines (TGF-β, IL-1β, IL-6 and IL-23) and the chemokine CCL20 were from R&D Systems (Minneapolis, MN). The kit for the isolation of human naïve CD4+ T cells was from STEMCELL Technologies (Vancouver, BC, Canada). The CD3/CD28 Dynabeads were from Invitrogen Dynal AS (Oslo, Norway). Non-conjugated rabbit anti-DDR1 (C-20) and anti-β-actin (C-2) antibodies were from Santa Cruz Biotechnology (Santa Cruz, CA). The anti-human DDR1-PE (51D6)
was from Biolegend (San Diego, CA). The anti-phospho-p38 (28B10), anti-phospho-JNK1/2 (G9) and anti-JNK-2 (9252) antibodies were from Cell Signaling Technology (Danvers, MA). The anti-human CCR6-Alexa 647 (clone 11A9), anti-human IL-17-Alexa 647 (N49-653) and control isotypic antibodies were from BD Bioscience (San Diego, CA).

4.2 Human Th17 differentiation

Human naïve CD4\(^+\) T cells were freshly isolated from peripheral blood of healthy donors by a ficoll gradient and the use of the human naïve CD4\(^+\) T cells isolation kit. The cells were then polarized towards Th17 during 6 days in X-vivo medium containing IL-1β, TGF-β, IL-6, IL-23 and anti-CD3/CD28 beads as we previously described [El Azreq et al., 2015]. The ethical committee of Laval University approved the study.

4.3 Cell migration assays

We evaluated the motility of human polarized Th17 cells in 3D collagen by live cell confocal microscopy. For collagen gel preparation, type I collagen stock solution was diluted to 1.6 mg/ml at 4\(^\circ\) C in X-vivo medium and its pH adjusted to 7.4 with sodium hydroxide. The cells were labeled with calcein-AM (5 nM) for 30 min in the dark at 37\(^\circ\) C, washed with PBS, embedded in collagen gel solution (2 x 10\(^6\) cells in 300 µl) and seeded in 8 wells-labtek plates. The plates were incubated at 37\(^\circ\) C for 1 h to allow collagen polymerization, after which they were placed at 37\(^\circ\) C in a pre-warmed environmental chamber (LiveCell3, Pathology Devices). The cells were then observed by digital time-lapse using a spinning disk confocal microscope (Wave FX-Borealis-Leica DMI 6000B, Quorum Technologies) and a 10X objective (HC PL Apo NA 0.4). Images were recorded using an Image EM-camera (Hamamatsu photonics) for 30 min with 30 sec frame intervals. The migratory distance of 100 cells for each sample was quantified by computer-assisted cell tracking (Volocity software, PerkinElmer) and average speed (velocity) per cell was calculated and expressed as µm/min.

Th17 cell migration in 3D collagen was also performed using transwell inserts of polycarbonate membrane (3 µm, BD Biosciences) coated with collagen gels and mounted in
24-well plates. 30 µl of the collagen solution (1.6 mg/ml) was overlaid on the top of the inserts and incubated for 1 h at 37°C to allow collagen polymerization. Th17 cell suspensions (5 x 10^5 cells in 100 µl of X-vivo medium) were then added on the top of the collagen gels. After 24 h, cells that had passed through the transwells to the other side of the filters and in the outer wells, which contains the chemoattractant CCL20 (1 µg/ml) or DMSO diluted in X-vivo medium, were recovered and counted microscopically by two independent observers.

4.4 Flow cytometry analysis

Cell surface expression of DDR1 and CCR6 was determined by flow cytometry. Polarized Th17 cells were stained for 1 h in PBS containing anti-DDR1-PE (51D6) and anti-CCR6-Alexa 647 (11A9) antibodies. The cells were then washed and analyzed by flow cytometry (BD FACSCalibur II). To determine the number of IL-17-producing cells (Th17) that migrated through the collagen gel-coated transwells, the cells were recovered from the lower chambers and activated with PMA+ionomycin for 6 h at 37°C in medium containing Golgi plug brefeldin A (BD Bioscience) to block cytokine secretion. The cells were then washed, fixed/permeabilized with a CytoFix/CytoPerm kit (BD Bioscience) and stained with intracellular Alexa-647-conjugated anti-IL-17 antibody (N49-653). After staining, the cells were washed and analyzed by flow cytometry (BD FACSCalibur II). Cells stained with isotypic antibodies were used as controls.

4.5 siRNA transfection

Human polarized Th17 cells were transfected using Nucleofector™ 2b device (program V-024) and the human T cell nucleofection kit reagent as recommended by the manufacturer (Lonza Technologies, Basel, Switzerland). The cells were transfected after four days of culture in Th17 polarizing conditions with 250 nM of validated siRNAs targeting p38 MAPK or DDR1. A pool of four siRNA sequences targeting p38 MAPK (MAPK14 on target plus smart pool) (L-003512-00-0005) and control siRNA sequences were from Dharmaco (Thermo scientific). The DDR1-targeting (HSS1878780) and corresponding non-silencing siRNA sequences were from Invitrogen (Invitrogen). After nuclefection, the cells were immediately transferred to pre-warmed X-vivo medium and incubated for 6 hours. Live cells
were recovered by ficoll gradient separation and cultured for an additional 42 hours before being used in subsequent experiments.

4.6 Western blot

Activation of p38 and JNK MAPKs was determined by immunoblot analysis using specific antibodies recognizing the phosphorylated forms of p38 (28B10) and of JNK (G9). Human polarized Th17 cells (3x10^6 /well) were embedded in 1 ml of collagen gel (1.6 mg/ml). After different periods of time, the cells were released from collagen by a collagenase IV (1mg/ml) treatment (30 min at 37° C). The cells were harvested, washed in PBS and cell lysates were prepared in RIPA buffer containing proteases and phosphatases inhibitors. Cell lysates were subjected to SDS-PAGE and analyzed by immunoblot to determine the levels of phosphorylated p38 and JNK. The DDR1 expression levels were also determined by immunoblot analysis using the anti-DDR1 (C-20) antibody. Blots were stripped and reprobed with control antibodies to ensure equal loading. In all experiments, immunoblots were visualized using an HRP-conjugated antibody followed by enhanced chemiluminescence detection (Pierce, Rockford, IL).

4.7 Statistical analysis

Statistical analysis was performed by the Student’s t test. Results with p<0.05 were considered significant.

5. Results

5.1 3D collagen activates p38 MAPK

To determine the role of p38 in T cell migration in 3D collagen, we first examined the ability of 3D collagen to activate p38 in human polarized Th17 cells. To this end, the cells were embedded in collagen gels for different periods of time and p38 phosphorylation was evaluated by western blot analysis. The results showed that p38 phosphorylation increases after 1 h and lasted for up to 6 h (Fig. 1). The use of collagenase IV to release the cells from
collagen gels had no effect on the phosphorylated levels of p38 (data not shown). These results indicate that migrating human Th17 cells in 3D collagen increase their activity of p38.

5.2 p38 activity is required for Th17 cell migration in 3D collagen

To determine the importance of p38 in T cell migration, we have studied the effect of the specific p38 MAPK inhibitor SB203580 on Th17 motility in 3D collagen by live cell confocal microscopy. Treatment of human polarized Th17 with the p38 inhibitor reduced their velocity in 3D collagen by almost 75% compared to cells that were treated with DMSO (control) (Fig. 2A). In addition, we assessed the effect of SB203580 on Th17 invasion and chemotaxis in 3D collagen using collagen gel-coated transwells. Th17 cells express the CCR6 receptor and respond to the chemokine CCL20 [Acosta-Rodriguez et al., 2007] and we found that at least 50% of the human polarized Th17 cells express CCR6. Human polarized Th17 cells migrated through collagen gel-coated transwells and CCL20 increased their migration by 3 folds (Fig. 2B). Treatment of the cells with SB203580 reduced by 50-60% both random and CCL20-directed migration of human polarized Th17 cells (Fig. 2B). The p38 inhibitor had no effect on Th17 viability or proliferation (data not shown).

In addition to the p38 inhibitor, we also used a knockdown approach. Upon their culture in collagen gels, human polarized Th17 cells transfected with p38 siRNA showed a strong reduction of p38 phosphorylation compared to those transfected with control siRNA (Fig. 3A). Importantly, the cells transfected with p38 siRNA exhibited a dramatic reduction of their motility in 3D collagen compared to those transfected with control siRNA (Fig. 3B). Furthermore, p38 siRNA also reduced the ability of human polarized Th17 cells to migrate across collagen gel-coated transwells (Fig. 3C).

Since not all polarized Th17 cells produce IL-17, we wished to determine if IL-17-producing cells (Th17 cells) are targeted upon p38 silencing. To this end, we determined the number of IL-17-producing cells that have migrated through collagen gel-coated transwells. Thus, the recovered cells from the outer wells were activated with PMA+ionomycin and analyzed for intracellular IL-17 production by FACS analysis. As shown, p38 siRNA reduced by 50-70% the number of Th17 cells migrating randomly or in response to CCL20 (Fig. 4). Together,
these results indicate that p38 MAPK is essential to the migration of human Th17 cells in 3D collag

5.3 JNK is dispensable for Th17 migration

We have recently reported the implication of MAPK/ERK in Th17 migration in 3D collagen [El Azreq et al., 2016] and the results above support a role for p38. Since the MAPK/ JNK also plays an important role in cell migration, we examined its implication in Th17 migration. We found that 3D collagen also increases JNK phosphorylation (Fig. 5A) but the JNK inhibitor SP600125 had no effect on Th17 migration (Fig. 5B). As a control, the SP600125 inhibitor blocked by 80% the production of IL-17 by human polarized Th17 cells upon their activation with anti-CD3/CD28 antibodies (data not shown). These results suggest that the JNK/MAPK is not involved in Th17 migration in 3D migration.

5.4 DDR1 is involved in p38 MAPK activation and migration

We then sought to determine which receptor is involved in p38 activation. We recently reported that the non-integrin collagen receptor DDR1 promoted Th17 migration [El Azreq et al., 2016]. Therefore, we considered DDR1 as a potential pathway for p38 activation in 3D collagen. DDR1 silencing significantly reduced the protein levels of DDR1 (Fig. 6A) and the motility of transfected Th17 cells in 3D collagen (Fig. 6B). In addition, DDR1 siRNA also reduced p38 phosphorylation (Fig. 6C). Densitometry analysis showed a 50% reduction in the phosphorylated levels of p38 in cells transfected with DDR1 siRNA compared to cells transfected with control siRNA. Together these results indicate that DDR1 is important for p38 activation and migration of Th17 cells in 3D collagen.
6. Discussion

Effector T cell migration within interstitial tissues is a key step of the adaptive immune response and in the development of inflammatory diseases. Thus it is critical to understand the molecular mechanisms regulating this process. In this study, we show that activation of p38 MAPK, via DDR1, promotes human Th17 cell migration in 3D collagen. The p38 MAPK pathway plays a major role in the inflammatory response including in T cell differentiation and production of IFNγ and IL-17 cytokines [Noubade et al., 2011; Yang et al., 2010]. Our study provides additional evidence to the pivotal role played by p38 in Th17 cells further reinforcing the rationale for targeting the p38 MAPK pathway in Th17-dependent inflammatory diseases.

Several studies that have been performed with 2D models of cell migration have shown the importance of p38 pathway in cell motility. However, p38 has also been associated with cell migration in 3D collagen as is the case with endothelial cells [Hang et al., 2013] and with the invasion of carcinoma cells [Naci et al., 2015; Rider et al., 2013]. Given the more physiological relevance of 3D models of cell migration and the role of p38 in Th17 migration (this study) and in the development of inflammatory diseases, it is likely that p38 might be of critical importance for \textit{in vivo} T cell migration.

We also showed that p38 MAPK is regulated by DDR1; a non-integrin tyrosine kinase transmembrane receptor that binds different types of collagens. DDR1 is considered as a collagen sensor and has been involved in various cellular functions such as proliferation, adhesion and migration [Leitinger, 2014; Vogel et al., 2006]. We recently have shown that DDR1 promotes human Th17 migration in 3D collagen by activating the MAPK/ERK pathway [El Azreq et al., 2016]. Our findings herein indicate that p38 MAPK is an additional molecular pathway by which DDR1 promotes T cell migration. However, we found that the MAPK/JNK is dispensable for Th17 migration. Collectively these results indicate that DDR1 promotes the migration of effector T cells by concomitantly activating p38 and ERK MAPKs. Thus, the blockade of the DDR1/MAPK pathway could interfere with the migration of effector T cells into collagen-rich tissues.

DDR1 silencing did not completely abolished p38 phosphorylation in Th17 cells migrating in 3D collagen suggesting that additional receptors might be involved. In this regard, it has
previously been shown that the calreticulin-thrombospondin-CD47 and CD26 pathways also regulate T cell migration in collagen gels [Li et al., 2005; Liu et al., 2009]. Whether these pathways are linked to p38 MAPK and/or DDR1 pathways remain to be investigated. Although integrins are dispensable for the amoeboid migration of activated T cells [Friedl et al., 1998; Friedl and Weigelin, 2008; Lämmermann et al., 2008; Schmidt and Friedl, 2010], it is possible that they contribute to the observed p38 activation in 3D collagen. In agreement with our findings, it has been shown that DDR1 mediates collagen-induced inflammatory activation of microglia [Seo et al., 2008] and collagen-induced nitric oxide production in murine macrophages through p38 activation [Kim et al., 2007]. Thus, besides macrophages, DDR1 signaling is also connected to the p38 MAPK pathway in human effector T cells.

Inhibition of p38 activity also decreased CCL20-induced migration of Th17 cells indicating that in addition to random migration, p38 is essential for Th17 chemotaxis in 3D collagen. Inhibition of p38 did not affect the expression levels of DDR1 or of the CCL20 receptor (CCR6) (data not shown) suggesting a crosstalk between DDR1/MAPK p38 and CCR6 pathways in regulating Th17 chemotaxis in 3D collagen.

Although it is unclear how p38 promotes Th17 migration, it is unlikely that it occurs via MMPs since migration of T cells including Th17 cells in 3D collagen follows the amoeboid movement, which is independent from MMPs activity [El Azreq et al., 2016; Friedl et al., 1998; Schmidt and Friedl, 2010]. One possibility is that p38 modulates cytoskeleton rearrangements through phosphorylation of heat shock proteins [Guay et al., 1997]. Current studies are underway to understand how the p38 MAPK promotes Th17 migration in 3D collagen.

Activation of p38 has been involved in the pathogenesis of many autoimmune diseases such as rheumatoid arthritis, multiple sclerosis and Crohn’s disease [Clark and Dean, 2012; Feng and Li, 2011; Krementsov et al., 2013]. A large number of preclinical studies on p38 inhibitors showed great promise in many animal models of autoimmune diseases [Patterson et al., 2014]. However, in clinical trials, these inhibitors showed low efficacy [Dambach, 2005; Patterson et al., 2014]. Recent studies suggested that targeting upstream activators of p38 may prove more efficient [Guma et al., 2012], thus emphasizing the importance of understanding how DDR1 signaling activates the p38 MAPK pathway in Th17 cells.
7. References

Yang Z, Zhang X, Darrah PA, Mosser DM. 2010. The regulation of Th1 responses by the p38 MAPK. Journal of Immunology 185:6205-6213.

8. Figures and legends

Figure 1: 3D Collagen activates p38 MAPK in Th17 cells. Human polarized Th17 cells were cultured in X-vivo medium or in collagen gels (3D coll) for the indicated periods of time. The cells were then released from collagen gels and lysed in RIPA buffer. Cell lysates were subjected to western blot analysis using the anti-phospho-p38 antibody. The blot was stripped and reprobed with anti-β-actin antibody to ensure equal loading. The presented immunoblot is representative of three independent experiments performed with three different blood donors.
Figure 2: Inhibition of p38 MAPK inhibits Th17 migration in 3D collagen. (A) The p38 inhibitor SB203580 reduces Th17 cell motility in 3D collagen (3D coll). Human polarized Th17 were labeled with calcium AM and preincubated for 1 h at 37 °C with the p38 inhibitor (10 µM) or DMSO as a control and then embedded in collagen gels. Cell migration was evaluated by live cell confocal microscopy and quantified by computer assisted cell tracking. Representative cell migration tracks over 30 min are presented as x-y projections (distance, in µm) (left panel). The histogram (right panel) represents the mean velocity of 100 cells presented as µm/min. (B) The p38 inhibitor SB203580 reduces Th17 invasion and chemotaxis in 3D collagen. The cells were preincubated for 1 h at 37 °C with the p38 inhibitor (10 µM) or DMSO as control and allowed to migrate through collagen gel-coated transwells. After 24 h, the cells that had passed in the outer wells, which contained X-vivo medium with or without 1µg/ml of CCL20 were recovered and counted microscopically. The results are mean values ± SD of three independent experiments performed with three different blood donors. *p <0.05.
Figure 3: p38 silencing inhibits Th17 cell migration in 3D collagen. Polarized Th17 cells were transfected with p38 or control siRNAs using nucleofection as described in the “Materials and Methods” section. (A) The phosphorylation levels of p38 were determined by western blot analysis. The immunoblot is representative of three independent experiments performed with three different blood donors. (B) The p38 siRNA reduces Th17 motility. Transfected cells were labeled with calcium AM and embedded in collagen gels. Cell migration was evaluated by live cell confocal microscopy and quantified by computer assisted cell tracking. (C) The p38 siRNA reduces invasion and chemotaxis of Th17 cells. Transfected cells were tested for their invasion of collagen gel-coated transwells. After 24 h, the cells that had passed in the outer wells, which contained X-vivo medium with or without 1μg/ml of CCL20 were recovered and counted microscopically. The results are mean values ± SD of three independent experiments performed with three different blood donors. *P < 0.05.
Figure 4: p38 silencing inhibits the migration of IL-17-positive cells (Th17). Human polarized Th17 cells were tested for their invasion of collagen gel-coated transwells. The cells that had migrated to the lower chambers were recovered and activated for 6 h with PMA+ionomycin in the presence of Golgiplug to capture IL-17-producing cells. The cells were fixed/permeabilized, stained with intracellular anti-IL-17-Alexa-647 antibody and analyzed by flow cytometry. The results are mean values ± SD of three independent experiments performed with three different blood donors. *p <0.05
Figure 5: JNK/MAPK is dispensable for Th17 migration in 3D collagen. (A) 3D collagen activates JNK in human polarized Th17 cells. The cells were cultured in X-vivo medium or in collagen gels (3D coll) for the indicated periods of time. The cells were then released from collagen gels and lysed in RIPA buffer. Cell lysates were subjected to western blot analysis using phospho-JNK1/2 antibody. The blot was stripped and reprobed with anti-JNK-2 antibody to ensure equal loading. The presented immunoblot is representative of three independent experiments performed with three different blood donors. (B) JNK/MAP kinase is not required for Th17 migration. The cells were preincubated for 1 h at 37 °C with 10 µM of the JNK inhibitor (SP600125) or DMSO as control and allowed to migrate through collagen gel-coated transwells. After 24 h, the cells that had passed in the outer wells, which contained X-vivo medium with or without 1µg/ml of CCL20 were recovered and counted microscopically. The results are mean values ± SD of three independent experiments performed with three different blood donors. *p <0.05.
Figure 6: 3D collagen-mediated increase of p38 phosphorylation is dependent on DDR1.

Polarized Th17 cells were transfected with DDR1 or non-silencing siRNAs using nucleofection. (A) The cells were lysed and subjected to western blot to assess the DDR1 protein levels using anti-DDR1 antibody. The blot was stripped and reprobed with anti-β-actin antibody to ensure equal loading. The results are representative of three independent experiments performed with three different blood donors. (B) Transfected cells were labeled with calcein-AM and embedded in collagen gels. Cell motility was evaluated by live cell confocal microscopy and quantified by computer assisted cell tracking. The results are mean values ± SD of three independent experiments performed with three different blood donors. *p < 0.05 (C) The DDR1 siRNA reduces collagen-mediated p38 phosphorylation. Transfected cells were cultured for 1 h in collagen gels (3D coll). They were then released,
lysed in RIPA buffer and cell lysates were subjected to western blot analysis using anti-phospho-p38 antibody. The blots were stripped and reprobed with anti-β-actin antibody to ensure equal loading. The results are representative of three independent experiments performed with three different blood donors.
Chapitre III : Discussion

La migration des lymphocytes T effecteurs à travers la MEC est un événement essentiel au cours de la réponse immune adaptative mais aussi, dans le développement de maladies auto-immunes. Ce processus est régulé par l’ensemble des interactions fonctionnelles entre les lymphocytes T par le biais de récepteur spécifique à la MEC, dont le collagène de type 1 est le constituant majeur. Or, actuellement les mécanismes moléculaires qui régulent ce processus sont encore peu étudiés. Dans cette étude nous avons tenté de mieux caractériser les mécanismes qui régissent la migration des lymphocytes Th17 à travers le tissu interstitiel.

Les Th17 sont une sous-population de lymphocytes T effecteurs qui joue un rôle important dans la réponse anti-microbiale. De plus, ils ont été aussi impliqués dans le développement de plusieurs maladies auto-immunes comme le psoriasis, la maladie de Crohn ou l’arthrite rhumatoïde [83]. De ce fait, il est d’intérêt clinique d’étudier les mécanismes qui régulent leur migration. Les résultats obtenus ont permis d’identifier la voie MAPK p38, comme étant une voie importante pour la migration des lymphocytes Th17 à travers le collagène 3D.

La kinase p38 est un membre des MAPKs : une famille de protéines kinases qui est bien connue pour réguler plusieurs processus cellulaires, tel que l’expression génique, la différenciation, la survie, la migration et l’invasion [201]. La voie p38 joue un rôle crucial lors de la réponse immune inflammatoire. Elle est impliquée dans l’activation des cellules immunes ainsi que dans le développement de maladies auto-immunes. Chez les lymphocytes T, cette voie est engagée dans la différenciation des lymphocytes Th1 et la production d’IFN-γ. Récemment cette voie a été aussi impliquée dans la différenciation des lymphocytes Th17, ainsi que dans la production de l’IL-17 [213,214]. De ce fait notre étude apporte une évidence additionnelle concernant le rôle joué par la voie p38 dans la réponse immune et dans les maladies inflammatoires.

Plusieurs études ont rapporté l’importance de la voie MAPK p38 dans la migration de plusieurs types cellulaires. Ainsi l’inhibition de la voie p38, réduit la migration des cellules du muscle du muscle lisse, les fibroblastes et les neutrophiles en réponse aux facteurs de croissances et cytokines [222]. De plus il a été rapporté que la voie p38 induit la migration des cellules endothéliales dans le collagène 3D, ainsi que l’invasion des cellules du carcinome du sein [220,223]. Ce qui confirme l’implication de cette voie dans la migration.
des Th17. De plus, dans cette étude nous avons montré que l’inhibition de p38 réduit la migration spontanée, ainsi que migration dirigée des lymphocytes Th17 en réponse au CCL20; une chimiokine essentielle pour la migration des Th17 vers le site inflammatoire [69].

Nous avons montré que la voie p38 est activée par DDR1; un récepteur transmembranaire de la famille des récepteurs tyrosine kinase qui lie différents types de collagènes. Ce récepteur est exprimé à la surface de plusieurs types cellulaires, et est impliqué dans la régulation de nombreuses fonctions cellulaire comme : la prolifération, l’adhésion et la migration [155,162]. Récemment, nous avons montré que DDR1 est exprimé à la surface des lymphocytes Th17, et que ce récepteur régule la migration des Th17 à travers la matrice de collagène en activant la voie Rho/ROCK/MAPK/ERK [172]. Ainsi dans la présente étude, nous avons identifié la voie p38 comme étant une voie additionnelle par laquelle par DDR1 régule la migration des Th17. De plus, nos résultats montrent que la voie MAPK JNK n’est pas activée par la liaison de DDR1 aux fibres de collagène. Cependant, plusieurs études ont rapporté que voie JNK joue un rôle essentiel dans la migration de plusieurs cellules. L’inhibition de cette voie réduit sensiblement la migration des cellules souches embryonnaires, cellules vasculaire du muscle lisse, et la lignée de fibroblaste 3T3 [224–226].

Ainsi, l’ensemble de nos résultats indiquent que DDR1 régule la migration des lymphocytes Th17 en activant les voies Rho/ROCK/MAPK/ERK ainsi que la voie MAPK p38 (schéma 6).
Notre résultat en figure 6 montre que l’utilisation d’un siRNA contre DDR1 n’abolit pas complétement le niveau de phosphorylation de p38, ce qui suggère l’implication d’autres récepteurs au collagène. Dans ce sens, il a été rapporté que l’interaction de la calreticulin-thrombospondin avec le CD47 régule la motilité des lymphocytes T dans le collagène 3D.[228]. Il reste à déterminer si cette voie est importante dans l’activation de p38 observée dans les lymphocytes Th17.

De plus, même si la migration des lymphocytes T à travers le collagène 3D est de type amiboïde, et ne requiert pas l’implication de la famille β1 intégrines, il est possible que ces récepteurs soient impliqués dans l’activation de la voie p38, puisque plusieurs études ont montré qu’il existe une coopération entre l’intégrine α2β1 et DDR1 afin d’induire l’adhésion cellulaire ou encore l’invasion des cellules cancereuses pancréatiques via l’activation de la
voie MAPK JNK [155,229]. Toutefois, la coopération de DDR1 et des intégrines chez les lymphocytes T reste encore à déterminer.

Même si dans cette étude nous avons montré l’implication de la voie p38 dans la migration, il reste que les mécanismes par lesquelles cette voie régule la migration amiboïde des Th17 dans le collagène 3D n’ont pas été investigués. Vu l’importance de la contraction de la cellule, il est possible que la voie p38 régule cette étape de migration via la voie RhoA/ROCK. Par ailleurs, il est possible que la voie p38 puisse aussi contribuer à la migration en inhibant la voie Rac-1 qui est une voie inhibitrice du mouvement amiboïde, et qui est diminuée durant la migration des Th17 dans le collagène 3D. Pour ce faire, une étude protéomique permettrait de déterminer les protéines susceptibles d’interagir et d’être phosphorylées par la voie p38. Ce qui pourrait nous renseigner sur les mécanismes potentiels de son implication. Cette étude peut aussi indiquer comment DDR1 peut activer p38.

L’activation de la voie p38 a été impliquée dans le développement de plusieurs maladies auto-immunes. En particulier, dans l’arthrite rhumatoïde où la voie p38 régule l’activation de plusieurs gènes qui participent à l’inflammation synoviale incluant l’IL-1, l’IL-6, le TNF-α, ainsi que les MMPs qui sont responsables de la dégradation osseuse [231,232]. Cependant, le rôle de p38 dans la migration des lymphocytes Th17 in vivo, n’a pas été directement investigué. Une étude a montré que la voie p38 est activée par DDR1 chez les macrophages murins, et que l’utilisation d’inhibitions de cette voie diminue l’activation des macrophages et la production de NO [230]. Bien que cet effet puisse aussi s’exercer sur les lymphocytes T qui migrent vers le site inflammatoire, une étude récente a directement mis en cause le rôle de la voie p38 dans l’activation des Th17 dans un modèle murin de sclérose en plaques [203]. Ainsi, l’ensemble de ces études combinées avec la nôtre montrent que d’autres études sont nécessaires pour comprendre l’implication de la voie p38 dans la migration des lymphocytes T et en particulier des Th17.

Dans le but d’élaborer une thérapie efficace pour le traitement de ces maladies auto-immunes, plusieurs études précliniques ont été réalisées. L’utilisation d’inhibiteurs de la voie p38 a montré d’excellents résultats dans de nombreux modèles de maladies auto-immunes [233]. Cependant, les essais cliniques de ces inhibiteurs ont généralement tous échoué dû à leur faible efficacité et toxicité [234]. Dans ce contexte, une étude récente a montré que le ciblage
des activateurs de la voie p38 serait plus efficace [232], soulignant ainsi l’importance de comprendre comment DDR1 active la voie p38 chez les lymphocytes Th17.
Chapitre IV : Références bibliographiques

Johnson JD, Edman JC, Rutter WJ. A receptor tyrosine kinase found in breast carcinoma cells has an extracellular discoidin I-like domain. Proc Natl Acad Sci U S A 1993;90:5677–81.

